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ABSTRACT 

 

Open-source software becomes increasingly popular nowadays.  Many startup 

companies and small business owners choose to adopt open source software packages to 

meet their daily office computing needs or to build their IT infrastructure.  Unlike 

proprietary software systems, open source software systems usually have a 

loosely-organized developer collaboration structure.  Developers work on their 

“assignments” on a voluntary basis.  Many developers do not physically meet their 

“co-workers.”  This unique developer collaboration pattern leads to unique software 

development process, and hence unique structure of software products.  It is those 

unique characteristics of open source software that motivate this dissertation study.  Our 

research follows the framework of the four key elements of software engineering: Project, 

People, Process and Product (Jacobson, Booch et al. 1999).  This dissertation studies 

three of the four P’s: People, Process and Product.   

Due to the large sizes and high complexities of many open source software 

packages, the traditional analysis methods and measures in software engineering can not 

be readily leveraged to analyze those software packages.  In this dissertation, we adopt 

complex network theory to perform our analysis on open source software packages, 

software development process, and the collaboration among software developers.  We 

intend to discover some common characteristics that are shared by different open source 
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software packages, and provide a possible explanation of the development process of 

those software products.  Specifically we represent real world entities, such as open 

source software source code or developer collaborations, with networks composed of 

inter-connected vertices.  We then leverage the topological metrics that have been 

established in complex network theory to analyze those networks.  We also propose our 

own random network growth model to illustrate open source software development 

processes.  Our research results can be potentially used by software practitioners who 

are interested to develop high quality software products and reduce the risks in the 

development process.   

Chapter 1 is an introduction of the dissertation’s structure and research scope.  We 

aim at studying open source software with complex networks.  The details of the 4-P 

framework will be introduced in that chapter.   

Chapter 2 analyzes five C-language based open source software packages by 

leveraging function dependency networks.  That chapter calculates the topological 

measures of the dependency networks extracted from software source code.   

Chapter 3 analyzes the collaborative relationship among open source software 

developers.  We extract developer’s co-working data out of two software bug fixing data 

sets.  Again by leveraging complex network theory, we find out a number of topological 

characteristics of the software developer networks, such as the scale-free property. We 

also realize the topological differences between from the bug side and from the developer 

side for the extracted bipartite networks.   
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Chapter 4 is to compare two widely adopted clustering coefficient definitions, the 

one proposed by Watts and Strogatz, the other by Newman.  The analytical similarities 

and differences between the two clustering coefficient definitions provide useful 

guidance to the proposal of the random network growth model that is presented in the 

next chapter.   

Chapter 5 aims to characterize the open source software development process.  

We propose a two-phase network growth model to illustrate the software development 

process.  Our model describes how different software source code units interconnect as 

the size of the software grows.  A case study was performed by using the same five open 

source software packages that have been adopted in Chapter 2.  The empirical results 

demonstrate that our model provides a possible explanation on the process of how open 

source software products are developed.   

Chapter 6 concludes the dissertation and highlights the possible future research 

directions.   
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CHAPTER 1 INTRODUCTION 

Open source software has been playing an increasingly important role in modern 

companies especially for startup companies.  Unlike its proprietary alternatives, open 

source software packages do not charge any fees for firms and individuals to use.  

Moreover all the source code is accessible to the public and allows any user to customize 

based on the user’s special requirements (Johnson 2006; Colazo 2010).  The developers 

of open source software usually do not have a rigid management structure since most 

developers choose to join and leave a project on a voluntary basis (Hahn, Moon et al. 

2008; Singh 2011).  Very few developers make their commitment choices based on 

short term financial rewards.  Developers usually join an open source software project 

because of personal interest in coding.  The loosely managed developer structure results 

in the different software development process and different fashion of project 

management compared with those of proprietary software.  Those unique natures that 

the open source software systems possess are likely to lead to different structures of 

software source code, the most important part of the software product.   

As open source software packages are expected to fulfill more and more business 

needs, the size of those software packages increases dramatically and their software 

structures become much more complicated over the years.  Quantitative evaluation of 

software architecture with large size is a complicated and often difficult task.  

Traditional analysis methods and measures that have been utilized in software 
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engineering field are no longer suitable to analyze those complicated software packages.  

Many readily-available evaluation metrics such as the number of files in a package, total 

lines of code, or the number of developers for a given project are not sufficiently 

descriptive.  Even measures such as complexity (Harrison, Samaraweera et al. 1996; 

Kang and Bieman 1999), maintainability (Li and Henry 1993), and cohesion (Etzkorn, 

Davis et al. 1998) often fail to fully capture the nature of software systems which are 

becoming increasingly complex.   

Thus, in order to gain meaningful insight into the structure of software systems, 

software developers and analysts have to search for more powerful, more detailed and 

more informative tools to serve their needs.  Recently random network theory becomes 

increasingly popular in analyzing complex systems.  Topological measures from random 

network theory and the related modeling techniques can afford a deeper level of 

understandings regarding the formation and evolution of code-based software structures 

and the processes governing the development of software systems.  

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959; Erdos and Renyi 

1960; Erdos and Renyi 1961) (ER) in 1959, random network theory has been applied to 

the study of complex systems across a wide variety of domains (Barabasi and Albert 

1999; Bilke and Peterson 2001; Barabasi, Jeong et al. 2002; Newman, Forrest et al. 2002; 

Ancel Meyers, Newman et al. 2003; Shaw 2003; Wu and Kshemkalyani 2008; Zheng, 

Zeng et al. 2008; Simpson, Hayasaka et al. 2011).  Our research is aimed at extending 

this emerging line of work by focusing on identifying unique characteristics of the 
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structure of complex software systems and the structure of software developers, and more 

importantly, developing models that can explain those structural characteristics.   

 

 

Fig. 1.1 4 P’s in the software engineering field. 

 

We intend to study the open source software by following a four P’s framework in 

software engineering field.  There are four P’s that are considered the key elements in 

software engineering field: namely Project, People, Process and Product.  Fig. 1.1 shows 

the four P’s and their relations.   

Project: the discipline of planning, organizing, securing, and managing resources to 

achieve software development goals.  Within the four P’s, project defines the overall 

scope of the software development goals, procedure, milestones, cost, resources, and etc.   

People: the prime movers in a software project including architects, developers, 

testers, and their supporting management, plus users, customers, and other stakeholders.   
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Process: a flow of control that can execute concurrently with other processes, 

usually including requirement analysis, architectural and detailed design, implementation, 

testing, deployment and maintenance.   

Product: the artifacts of development, such as models, code, documentations, and 

work plans.  Product is final deliverable and thus the goal of a software project.   

We choose to start our research by studying the final goal of the software project, 

the Product.  Chapter 2 presents a descriptive work on the structures of open source 

software products.  We choose five C-based open source software packages with 

different package size and from different application domains.  All of the packages are 

widely adopted in their domain and hence are considered “successful” products.  We 

extract the function dependency networks from the software source code by representing 

a function with a vertex and a function call with an edge.  By leveraging the topological 

measures that have been established in random network theory, we realize the five 

function dependency networks possess the same three features: (1) average degree is 

independent of network size, (2) clustering coefficient, in either of two definitions 

proposed by Watts and Strogatz, and by Newman, is independent of network size, and (3) 

the network is scale-free.  Our empirical findings show that there are common structural 

characteristics that are shared by open source software products across different size and 

domain.   

In Chapter 3, we extend our empirical study by analyzing another P in the Four P 

framework, the People.  Specifically we examine software developer’s collaboration 



www.manaraa.com

18 

 

networks that are extracted from two real world bug fixing data sets.  The bug fixing 

data sets contain information on which developer has fixed which bug at what time.  We 

extract two bug-developer bipartite networks, and then derive a developer-developer 

collaboration network for each data set.  In the bug-developer bipartite network, each 

bug and each developer are represented by a vertex.  An edge can only exist between a 

bug and a developer, which indicates the developer has been working on solving that bug.  

By examining the average degrees of the bug set and the developer set, we find the 

average number of bugs that developers have been involved in changes as the size of the 

open source software changes.  In the developer-developer collaboration network, a 

vertex represents a unique developer, and an edge connecting two vertices indicates that 

the two developers represented by those two vertices have been working on at least one 

same bug.  Our analysis shows that both data sets’ collaboration networks are scale-free.   

Since our empirical study involves clustering coefficient, one of the most useful 

topological measures in random network theory, we perform an analytical study on that 

measure in Chapter 4.  We compare two widely adopted clustering coefficient 

definitions, one proposed by Watts and Strogatz, the other by Newman.  Our analytical 

study shows that Watts-Strogatz’s definition is the mean of the ratio of local clustering 

factors, and Newman’s definition is the ratio of the means of local clustering factors.  

We also examine the lower bounds and upper bounds of those two definitions, and the 

conditions to meet those extreme bounds.  Our further analysis shows that the extremely 

popular vertices have little impact on Watts-Strogatz’s clustering coefficient definition, 
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whereas those popular vertices are the dominating factors for Newman’s definition.  The 

analytical results in Chapter 4, e.g. the impact factors of the two clustering coefficient 

definitions, are used as part of the motivations when our network growth model is 

proposed in Chapter 5.   

We examine the third P in the Four P framework, the Process, in Chapter 5.  We 

aim at providing an explanation on the development process of open source software 

packages.  Specifically, we propose a two-phase network growth model to illustrate the 

software development process.  As the size of the software increases, the software 

growth experiences two different growth mechanisms, namely two phases.  The first 

phase follows the hierarchical network model of Ravasz and Barabási (Ravasz and 

Barabasi 2003).  The second phase starts when the size of the software grows larger than 

a threshold.  In the second phase, software modules are connected by limited and 

random inter-module links.  The second phase strives to minimize the coupling across 

software modules.   

To validate the two-phase network growth model, we reuse the empirical results 

from Chapter 2, the five function dependency networks extracted from the C Based open 

source software packages, and the three common topological features that are shared by 

those five function dependency networks.  Both analytical and numerical studies show 

that the proposed model reproduces the topological features observed in real-world 

software packages.  We then conclude that our model can be a reasonable explanation of 

the open source software development process.   
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Chapter 6 concludes our research findings and presents some possible future study 

directions.   

Our study will provide useful guidance for software engineering researchers and 

practitioners in order to develop high quality open source software products, and reduce 

risks and costs in the open source software development process.   
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CHAPTER 2 ANALYZING COMPLEX SOFTWARE PRODUCTS WITH 

FUNCTION DEPENDENCY NETWORKS 

2.1 Introduction 

High-quality architectures can offer software development efforts considerable 

benefits, including improved productivity during development and maintenance cycles, 

reduced vulnerability to attacks and system failures, and increased understandability and 

extensibility.  However, evaluating the architectures of software systems, one of the 

most complex man-made artifacts ever created, is a complicated and often difficult task 

(Harrison, Samaraweera et al. 1996; Kang and Bieman 1999; Kanmani, Uthariaraj et al. 

2004).  Simple evaluation metrics, such as the number of files, functions, lines of code, 

or developers, and more sophisticated metrics measuring (Chhabra and Gupta 2010) such 

properties as complexity (Etzkorn, Davis et al. 1998; Wang, Chung et al. 2000; Fothi, 

Nyeky-Gaizler et al. 2003; Ma, He et al. 2010; Shin, Meneely et al. 2011), 

maintainability (Li and Henry 1993; Bagheri and Gasevic 2011), quality (Sarkar, Kak et 

al. 2008; Eichinger, Kramer et al. 2010), coupling (Li and Li 2011) and cohesion (Ott and 

Bieman 1998) currently available in the literature are deemed not sufficiently informative 

(Wang, Chung et al. 2000; Taherkhani, Korhonen et al. 2011).  There is still a great need 

for methodologies that can help us gain deeper insights into the structures of software 

systems and the processes governing their development. 
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In recent years, there have been a large number of studies devoted to characterizing 

and explaining a wide variety of complex networks, such as the World-Wide-Web, the 

Internet, movie actor collaboration networks (Watts and Strogatz 1998), science 

collaboration networks (Newman 2001; Newman 2001; Newman 2001), and cellular 

machinery networks (Milgram 1967; Barabasi and Albert 1999; Watts 1999; Amaral, 

Scala et al. 2000; Albert and Barabasi 2002; Barabasi, Jeong et al. 2002; Newman, Watts 

et al. 2002; Newman 2003; Goodreau, Kitts et al. 2009; Li and Niu 2011; Simpson, 

Hayasaka et al. 2011).  In this chapter, we apply and extend the rich constructs and 

models produced by this stream of research in analyzing software systems.  We model a 

software package as a network (also called a graph), in which a node (also called a 

vertex) represents a function in the package and an edge (also called an arc) connecting 

two nodes reflects the existence of dependency (i.e., function call) between the functions 

represented by the nodes.  This function dependency network provides a macroscopic 

view of software structure while obviating the minutiae of source code particulars.  As 

software systems are typically composed of numerous functions, with interactions among 

them directly reflecting the design and execution of the systems, studying this network 

can lead to valuable understanding of the underlying systems.   

The rest of the chapter is organized as follows.  We first introduce some 

background information of software engineering, open source software packages and 

random graph theory in Section 2.  In Section 3, we present five widely-adopted 

C-based open source software systems as our empirical study subjects.  Section 4 
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explains how we construct the function dependency networks for the five real world 

software packages.  In Section 5, we introduce several important topological measures 

that are widely leveraged in random network analysis.  Specifically we introduce two 

different definitions of clustering coefficient.  Our empirical findings are summarized in 

Section 6.  The analysis reveals a set of interesting features exhibited by the function 

dependency networks constructed after the packages.  Finally, we conclude the chapter 

with a summary of contributions and a discussion of possible future research directions in 

Section 7. 

 

2.2 Research backgrounds 

Quantitative evaluation of software architecture is a complicated and often difficult 

task.  Many readily-available evaluation metrics such as the number of files in a 

package, total lines of code, or the number of developers for a given project are not 

sufficiently descriptive.  Even measures such as complexity (Etzkorn, Davis et al. 1998; 

Wang, Chung et al. 2000), maintainability (Li and Henry 1993), and cohesion (Ott and 

Bieman 1998) often fail to fully capture the nature of software systems which are 

becoming increasingly complex (Wang, Chung et al. 2000).  Thus, in order to gain 

meaningful insight into the structure of software, systems developers and analysts must 

turn to more detailed indicators.  To this end we argue that topological measures from 

random graph theory and the related modeling techniques can afford a deeper level of 
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understandings regarding the formation and evolution of code-based software structures 

and the processes governing the development of software systems.  

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959) (ER) in 1959, 

random graph theory has been applied to the study of complex systems across a wide 

variety of domains (Albert and Barabasi 2002; Newman 2003).  The first step of 

adopting random graph theory is to represent a real complex system by defining a graph 

composed of weightless and size-less vertices and the edges connecting those vertices.  

A vertex usually represents a true entity that exists in the real complex system.  An edge 

is to describe a relationship between two vertices.  The relationship between two 

vertices captures the atomic dependency between those two entities that are represented 

by the two vertices.  Sometimes, along with the connection of those two vertices, the 

edge can also define the degree and the direction of the inter-entity relationship.  For 

example, if a Web page is represented by a vertex, then the edge between two vertices 

can be leveraged to represent a hyper textual link between two Web pages.  Moreover, 

the edge may have its direction which determines the hyper link direction between the 

two Web pages.  And the edge may also bear a weight that describes the level of 

connections, namely the number of hyperlinks, between those two Web pages.  Since 

the entities usually contain rather simple internal structures, it is intuitively true that 

describing the atomic relationship between two entities is relatively straightforward.   

Once the atomic inter-entity relationship is defined, assuming the homogeneity of 

those relationships, researchers can obtain the system level characteristics by aggregating 
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the effect of a large number of atomic relationships.  Random graph researchers have 

developed a number of useful metrics and methods to analyze the aggregated effect of the 

relationships.  Detailed information can be found in following sections.  Those metrics 

are believed to capture the system level characteristics of the complex system which in 

general sense are difficult to obtain.   

Despite the breadth of random graph analysis for complex systems, however, very 

few studies (e.g., (Potanin, Noble et al. 2005)) have sought to use this framework to 

analyze software systems.  Our research is aimed at extending this emerging line of 

work in random graph theory to describe the architectural structure of software packages 

while keep the main characteristics at the detailed design level.  Our research can 

provide an infrastructure to further examine the software structure and hopefully provide 

explanatory evidences to decipher the software development process in the near future.  

As is common in the random graph literature, we use the terms “graph” and “network” 

interchangeably in our research. 

 

2.3 Empirical analysis of real-world software packages 

We have identified five widely-adopted open-source software packages—OpenSSH 

(a secure communication client), Httpd (Apache Web server), Gaim (a multi-protocol 

instant messaging client), MySQL (a database management system), and GIMP (GNU 

Image Manipulation Program)—as the focus of our inquiry.  We specifically chose 

open-source software packages because of the following two reasons.  First of all, open 
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source software packages bear the nature of sharing their source code with the public 

users.  Hence it is fairly easy to achieve their source code without too much hassle and 

liability concerns.  Second of all, the success of an open-source software package is 

largely determined by its qualities whereas a proprietary software package may achieve 

its wide deployment by the financial advantage or readily available marketing channels of 

the software’s owner company. Thus we may conservatively conclude that a popular or 

widely adopted open source software package reflects the good quality of that software 

package.  At this stage of our research, we are more motivated to reveal the 

characteristics of good quality software packages than bad or mediocre ones.  All of the 

five software packages that we chose to analyze had proven records of shining popularity 

and high rate of being downloaded based on voluntary basis.  All of those packages are 

developed using the C programming language, which continues to be one of the most 

important languages in system software development.  We chose C-based software 

packages due to C language’s relatively simple architectural structure.  Namely C-based 

software packages have easily identifiable function calls among C functions.  And those 

function calls are the clear signals of function dependency which is the key point of a 

software package’s architectural complexity, reliability, and extensibility.  Table 2.1 

contains some basic information about the packages.  

While each individual software package may bear its unique micro structure, its 

overall architecture shares some common characteristics as a result of commonly adopted 

open source software development principals.  For example, open-source software 
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packages are usually developed on a volunteer basis.  The development management is 

executed in a loosely controlled manner.  These similarities intrigue us to hypothesize 

that there are some common properties universally possessed by different open-source 

software packages across a broad range of purpose, size, and complexity.  We are more 

interested in such universally possessed properties than in the specifics of a particular 

software package.  

 

Table 2.1 Basic information about five open-source software packages 

Package Version Size (KB) 
Number of 

files 

Total number 

of lines 

Number of lines 

of source code 

OpenSSH 4.0p1 1,978 273 74,087 40,817 

Httpd 2.0.54 3,717 302 116,698 60,927 

Gaim 1.3.1 6,386 477 229,481 137,030 

MySql 4.1.12 11,715 750 371,748 188,099 

GIMP 2.2.8 24,611 2,120 759,056 488,503 

 

2.4 Network construction 

In order to leverage random network theory to analyze complex software packages, 

we have to firstly abstract the software package to edge-connected vertices as described 

in the above section.  From the software engineering point of view, naturally, we choose 

the source code of the software packages as our target object.  The source code of a 
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complex software package usually possesses a hierarchical structure.  For example, a 

Java based software project usually contains a number of Java packages, each of which 

contains a number of Java files.  Any Java file may contain one or more Java classes 

which in turn contain a number of parameters and/or methods.  Each Java method 

contains a number of variables and a number of lines of code.  Any level of 

self-contained source code group may be represented as a vertex in the network which 

brings in more flexibility and, on the other hand, more difficulty in choosing a reasonable 

entity as the network vertex.   

Since we choose C programming language based software packages as the study 

subjects, and fortunately, C-based software packages carry a rather flat architectural 

structure.  Specifically, the building block of a C-based package is functions by nature.  

Each function must have a unique function name to distinguish itself throughout the 

entire package.  As function is the smallest self-contained operational unit of a language 

C-based software system, we focus on analyzing the dependency relationships among the 

functions in a package.  For each package, we construct a function dependency network 

representing each unique function in a unique source file with a vertex, and indicating the 

existence of dependency between two functions (i.e., at least one of the two functions 

calls the other) with an edge between the corresponding nodes.  At this stage of our 

research, we are not aimed at revealing the internal structure of a function.  We do not 

differentiate function “importance” by reading the code inside a function.  Rather we 

would like to study how functions are connected with one another, and how those 
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connections will affect the architectural characteristics of the software packages. For 

example, a heavily connected vertex indicates an important function; and a heavily 

connected network implies high coupling in general, etc.  

Note that the function dependency networks we extract from software packages are 

un-directed rather than directed.  That is, we intentionally ignore the direction of 

function calls when we construct the networks.  We choose to adopt this strategy for two 

main reasons.  First, the two definitions of clustering coefficient we use in this paper are 

mostly applied to undirected graphs.  Similar approaches have been adopted in other 

studies.  For example, Barabasi (Barabasi and Albert 1999; Barabasi, Albert et al. 1999) 

applied undirected networks to analyze the structure of the World-Wide-Web, where 

vertices represent Web pages and edges represent hyperlinks between Web pages, 

although the hyperlinks are indeed directed.  Ignoring the edge direction and weight 

allows us to study network properties such as clustering coefficient, going beyond basic 

degree distributions.  No widely-accepted definitions of clustering coefficient for 

directed, weighted networks are yet available.  Second, we are particularly interested in 

whether two functions are related (connected) than in the direction of their connection in 

this study.  The fact that two functions are related is by itself worth examining and can 

have important software engineering implications.  For example, if a few functions are 

highly connected to each another, and thus form a complete or semi clique, regardless of 

direction of function calls, one may suspect that these functions are written and 
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maintained by the same team of software developers.  As such, functional relations may 

provide useful insights for developer social network study. 

Furthermore, we ignore the weight attribute on the edges when constructing the 

function dependency networks (Yook, Jeong et al. 2001).  Every edge bears the same 

weight.  That is, we do not differentiate connected function pairs based on the number of 

function calls between them.  In software engineering field, low coupling is an 

important pursuit that every software developer has to consider.  Coupling is defined by 

a “whether or not connected” relation which means the coupling situation between any 

pair of connected functions remain the same regardless how strong the connection is 

between the function pair.  To better analyze how coupling is formed among functions, 

we choose to focus on whether two functions are connected rather than how they are 

connected.   

In a C-based system, we need to treat self loops carefully.  In a network, a self 

loop denotes the situation that a vertex has an edge connecting itself.  In a function 

dependency network, a self loop means a function calls itself, which, in software 

engineering field, is referred to as the recursion.  While recursion is meaningful and can 

often significantly reduce the length of the code, it is not directly related to our research 

objectives.  Since we are more interested in analyzing coupling among functions, a 

recursive function does not contribute to the coupling in our research domain.  Thus, we 

specifically remove the self loops when constructing the function dependency networks.   
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2.5 Network topological measures 

After constructing the function dependency networks for the real world software 

packages, we aggregate the atomic inter-function relationships to the system level 

metrics.  We leverage several topological measures that are widely adopted in random 

network theory.  Table 2.2 summarizes some symbols used in the rest of the paper.   

 

Table 2.2 Symbols of basic network measures 

Symbol Measure 

N  Number of nodes in the network, referred to as the network size 

M  Number of edges in the network 

i
k  Degree of node i , i.e., the number of edges connected to the node 

k  Average degree. 
1

1 2N

i

i

M
k k

N N=

= =∑ . 

( )p k  

The fraction of nodes in the network that have degree k , or equivalently, the 

probability that a node chosen uniformly at random has degree k  

(1)
C  Clustering coefficient in the Watts-Strogatz definition 

(2)
C  Clustering coefficient in the Newman definition 

Rand
C  Expected clustering coefficient of a purely random graph 
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2.5.1 Network size 

N is the number of vertices, namely functions, in the network.  It reflects the size 

of the network.  This variable is a direct indicator on the network complexity and system 

run time.  The higher the N, the more complicated the network is.  Since in a C-based 

system, every function has a unique function name, the computation of N is quite 

straightforward.    

 

2.5.2 Network connectivity 

M is the number of edges, namely function calls, in the network.  This variable 

reflects the system connectivity of the network.  When the size of network, N, is the 

same, the higher the M, the more heavily connected the network is.  As described in the 

previous section, M only counts the unique pair of connected vertices.  That is, any 

unique connected pair of functions counts one regardless how many times those two 

functions call each other.  Also as we described before, self loops are removed due to 

the scope of our research.  The number of edges also counts the connections between 

two different vertices.   

 

2.5.3 Vertex degree 

The degree of node i , 
i

k , is the number of edges connected to that node.  The 

variable 
i

k  reflects the connectivity around an individual vertex.  Thus the variable can 
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be leveraged as an indicator of the importance or popularity of that individual vertex.  If 

a vertex has a significantly high degree comparing with other vertices in the network, it 

usually implies that vertex represents an important function which calls or is called by 

many other functions.  Since the function dependency network is undirected and 

weightless, 
i

k  refers to the unique number of vertices that are connected to node i, 

regardless which function is the caller and which one is the callee.  Also since self loops 

are removed, those connected vertices that are being counted into the degree can not be 

vertex i itself.    

 

2.5.4 Average degree 

The average degree k  is the arithmetic mean of the degree values of all the 

vertices in the network.  Due to the impact of the network size N, M itself can not be 

used to describe the level of connectivity of the network.  Thus the average degree k  is 

usually leveraged to describe the overall connectivity of the network.  On a normal case, 

the higher the k , the more connected the network is.  Note since the network is 

undirected, every edge is counted twice when the average degree is computed.  The 

reason is because every edge is used to compute the value of degree for both vertices that 

that edge connects.  If the network were constructed as a directed network, every edge 

should be counted only once.   
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2.5.5 Degree distribution 

Degree distribution, the distribution of ( )p k , is also very useful in charactering a 

network.  By definition, ( )p k  is the fraction of nodes in the network that have degree 

k , or equivalently, the probability that a node chosen uniformly at random has degree k .  

In our research, ( )p k  is calculated as counting the number of vertices that have the 

same degree value.  The average degree k  may be too abstract to catch the detailed 

information of the network connectivity.  Specifically the impact of a heavily connected 

vertex may be overwhelmed by a large number of vertices that have low degree values.  

Thus the distribution of ( )p k  is adopted in order to reveal more detailed insight of the 

network connectivity.  The degree distribution may imply the variance of vertex degree 

values.   

The display of the distribution of ( )p k  is usually performed by plotting ( )p k  

against the sorted k  values.  In most random network research works, the logarithmic 

values of both ( )p k  and k  are used to display the plot.   

While the degree distribution of a random graph is binomial or Poisson in the limit 

of large graph size, real-world complex networks have been found to exhibit very 

different degree distributions, indicating that they are not purely random and may have 

formed following particular philosophies.  In particular, networks with power-law 

degree distributions (i.e., ( )p k k α−
� , and log ( )p k  is linear with regard to log k ) have 

been the focus of a large number of studies (Barabasi and Albert 1999; Barabasi, Albert 

et al. 1999; Faloutsos, Faloutsos et al. 1999; Dorogovtsev and Mendes 2001; Albert and 
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Barabasi 2002; Barabasi, Jeong et al. 2002).  Such networks are referred to as scale-free 

networks (Barabasi and Bonabeau 2003).  Many real-world networks, including the 

World-Wide-Web, the Internet, the actor collaboration network, the power grid network, 

and science citation networks, have been found to be scale-free (Watts and Strogatz 1998; 

Barabasi and Albert 1999; Newman 2003).  Some of them, such as the actor 

collaboration network and the power grid network, indeed only partially exhibit 

power-law degree distributions (Barabasi and Albert 1999).  In these networks, the 

frequencies of low-degree nodes are lower than what are expected from power-law 

distributions.  The log ( )p k -vs- log k  curves of the networks have a hockey stick shape 

with a straight line in the middle and a bended head at the beginning.  Moreover, there is 

a considerable amount of noise on the tail, indicating the existence of large variations in 

the frequencies of nodes with very high degrees.  Despite such deviations, for model 

building purposes and simplicity, in many cases researchers still classified such networks 

as scale-free, as the majority of their nodes follow power-law distributions (Barabasi and 

Albert 1999).  

 

2.5.6 Clustering coefficient 

Clustering coefficient measures the extent to which being a neighbor is a transitive 

property.  Clustering coefficient captures the level of connectivity of a local community 

within a network.  The higher the clustering coefficient, the more connected the 
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community is.  A special case of the heavily connected group is “clique” which includes 

a group of vertices that every vertex is connected to each other within the clique.   

A high clustering coefficient in the function dependency network implies that a 

group of functions are highly connected to one another.  That group of highly connected 

functions is likely to represent a self-contained software module, or subsystem within the 

software system.  The heavy connections within that module indicate those functions are 

strongly related and thus are strongly alike from the functionality standpoint.  In other 

words, a highly connected software module indicates the high cohesion within that 

module.   

Cohesion is a measure of how strongly-related the functionality expressed by the 

source code of a software module is.  In a system with high cohesion, the source code 

readability and extensibility are usually high.  Like low coupling, high cohesion is 

another important software engineer incentive that software developers would like to 

chase.  We hope clustering coefficient can provide a quantitative measure of the level of 

software cohesion.  

Clustering coefficient has two commonly used definitions (Watts and Strogatz 

1998; Newman 2003).  Watts and Strogatz (Watts and Strogatz 1998; Watts 1999) 

define a clustering coefficient for any node i  that has at least two neighbors (the 

clustering coefficient of a node with degree zero or one is defined as zero): 

(1)

( 1) / 2

i
i

i i

a
C

k k
=

−
, (2.1) 
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where ia  is the number of edges among the neighbors of node i .  This is 

equivalent to the following more graphical formulation 

(1) Number of triangles connected to node 

Number of connected triples centered on node 
i

i
C

i
= ,  (2.2) 

where a connected triple means a single node connected to an unordered pair of 

others. 

The clustering coefficient for the entire network, is then defined as the average  

(1) (1)

1

1 N

i

i

C C
N =

= ∑  (2.3) 

Another definition of clustering coefficient introduced by Newman (Newman, 

Strogatz et al. 2001; Newman, Watts et al. 2002; Newman 2003) is 

(2) 3  Number of triangles in the network

Number of connected triples in the network
C

×
=  (2.4) 

The constant three is used to normalize (2)
C  into the [0,1]  range, as each triangle 

contributes to three connected triples centered on different nodes.  The two definitions 

are similar in that (1)
C  calculates the mean of ratios while (2)

C  the ratio of means.  

However, they can give quite different results, as (1)
C  weights the contributions of 

low-degree nodes more heavily while (2)
C  treats all nodes equally. 

Clustering coefficient also helps to tell whether a network is purely random.  A 

random graph, defined by Erdős and Rényi (Erdos and Renyi 1959; Erdos and Renyi 

1960; Erdos and Renyi 1961), consists of N  nodes connected by M  edges chosen 

randomly from ( 1) / 2N N −  possible edges.  If define Rand
C  as the expected 
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clustering coefficient of a purely random graph, the clustering coefficient of a random 

graph has an expected value of /Rand
C k N= .   

 

2.6 Empirical findings 

By adopting the topological measures in the previous section, we perform our 

analysis on the five real world software packages.  We present some observations 

concerning the properties of the function dependency networks below, focusing on three 

topological measures—average degree, clustering coefficient, and degree 

distribution—which are considered particularly informative (Albert and Barabasi 2002; 

Newman 2003).   

 

Table 2.3 Topological measures of five function dependency networks 

Network N  M  k  
(1)

C  (2)
C  Rand

C  

OpenSSH 1,221 5,436 8.90 0.160 0.038 0.00729 

Httpd 2,061 5,005 4.86 0.108 0.028 0.00236 

Gaim 5,181 15,009 5.79 0.084 0.030 0.00112 

MySql 5,024 19,745 7.86 0.158 0.034 0.00156 

GIMP 14,380 45,224 6.29 0.132 0.023 0.00044 

 



www.manaraa.com

39 

 

Table 2.3 summarizes several topological measures.  We refer to the function 

dependency network of a software package by the package name.  For example, the 

function dependency network of the MySql package is referred to as the MySql network.  

The data support the intuition that a larger software package also has a larger function 

dependency network.  Minor exceptions exist.  For example, the size of the MySql 

package is approximately twice of that of the Gaim package, but the size of the MySql 

network is slightly smaller than that of the Gaim network.  Like package size, network 

size spans a wide range, from about a thousand to over ten thousand.  Fig. 2.1 to 2.5 

shows the networks drawn with Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 

 

 

Fig. 2.1 OpenSSH software function dependency network. 
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Fig. 2.2 Httpd software function dependency network. 

 

Fig. 2.3 Gaim software function dependency network. 
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Fig. 2.4 MySql software function dependency network. 

 

Fig. 2.5 GIMP software function dependency network. 
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2.6.1 Average degree 

While network size spans a wide range, average degree varies only slightly, ranging 

approximately from five to nine.  There is also no clear trend of variation on average 

degree as the network size increases.  This seems to imply that average degree is 

independent of network size, although, strictly speaking, the five networks are distinct 

software packages, rather than different versions of the same software package.  This 

finding provides some support to our hypothesis that there are some common topological 

properties shared by different software packages over a wide range of purpose, size, and 

complexity.   

 

2.6.2 Clustering coefficient 

Table 2.3 lists the clustering coefficient measures of the five real world software 

packages based on three definitions: Watts and Strogatz’s definition (1)
C , Newman’s 

definition (2)
C , and Erdős and Rényi’s definition Rand

C .   

Clustering coefficient is a useful measure in charactering a network.  It helps to 

tell whether a network is purely random.  Based on Erdős and Rényi’s model, the 

clustering coefficient of a random graph has an expected value of /Rand
C k N=  with N  

being the number of nodes and M  being the number of edges in the random graph.  

The clustering coefficient of any of the five networks (Table 2.3) is much larger 

than that of a random graph with the same N  and M .  The networks are far from 
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random graphs.  The five networks also appear to have very similar clustering 

coefficients, no matter which of the two definitions is used, although their sizes are 

largely different.  This seems to imply that the clustering coefficient of a software 

function dependency network, in either of the two definitions, is independent of network 

size, although the five networks are distinct software packages rather than different 

versions of the same software package.  This finding again provides some support to our 

hypothesis that there are some common topological properties shared by different 

software packages over a wide range of purpose, size, and complexity. 

 

2.6.3 Degree distribution 

Fig. 2.6 shows the degree distributions, the distribution of ( )p k , of the five 

function dependency networks.  They all appear to be approximately power-law 

distributions, as log ( )p k  appears to be approximately linear with regard to log k , other 

than a bended head and some noise on the tail, similar to what have been observed in the 

actor collaboration network and the power grid network (Barabasi and Albert 1999).  To 

better analyze the degree distributions of the networks, we have applied logarithmic 

binning (Adamic) to smoothen the original data (Fig. 2.7).  The logarithmically binned 

degree distributions also show that the five real-world networks seem to follow 

approximately power-law degree distributions.  In order to statistically analyze the 

power-law property, we use linear regression to test the relationship between log ( )p k  
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and log k .  As shown in Table 2.4, the coefficient of log k  is statistically significant at 

the .001 level and the R
2
 is over .9 for every network (over .95 for GIMP and Httpd), 

indicating that the linear model can adequately reflect the relationship between log ( )p k  

and log k .  Thus, the five function dependency networks, similar to the actor 

collaboration network and the power grid network (Barabasi and Albert 1999), can be 

considered roughly scale-free and are far from random graphs.  The networks also have 

very similar exponents (α ranging from 1.32 to 1.86), as Potanin et al. (Potanin, Noble et 

al. 2005) predicted.  
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Fig. 2.6 Degree distributions of five software function dependency networks (Logarithm 

of base two is used throughout this chapter). 
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Fig. 2.7 Logarithmically binned degree distributions of five software function 

dependency networks. 

 

Table 2.4 Linear relationship between log ( )p k  and log k  

Network R
2
 Sig. 

OpenSSH 0.906 0.0001 

Httpd 0.959 0.0001 

Gaim 0.940 0.0001 

MySql 0.928 0.0001 

GIMP 0.958 0.0001 

 

In summary, our empirical analysis reveals the following features of a software 

function dependency network: (1) average degree is independent of network size, (2) 
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clustering coefficient, in either of two definitions, is independent of network size, and (3) 

the network is scale-free.   

 

2.7 Concluding remarks 

Inspired by the increasing popularity of open source software systems, and a recent 

growth of random graph theory research, we model the real world software packages with 

function dependency networks.  We obtain the source code of five C-based open source 

software packages.  Then we construct an abstract network for each one of the software 

packages with the vertex representing a function and the edge as a function call.  In 

order to keep our research focal point concentrated on the software coupling and software 

cohesion, we ignore the direction and the number of calls for the function dependency.  

Thus the function dependency networks that we construct are undirected and 

un-weighted.  Driven by the same incentive, we also ignore the self loops which indicate 

a function call from a function to itself, namely recursive function calls.  Once the 

function dependency networks are constructed, we leverage several widely adopted 

topological measures to analyze those networks.  Those measures are to reveal some 

system level coupling and cohesion signals.  Our empirical analysis shows three features 

of a software function dependency network: (1) average degree is independent of network 

size, (2) clustering coefficient, in either of two definitions, is independent of network 

size, and (3) the network is scale-free.  These findings provide some support to our 
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hypothesis that there are some common topological properties shared by different 

software packages over a wide range of purpose, size, and complexity. 

The results of this work can be used as a starting point to quantitatively analyze 

software architectural structures.  They can also be used to evaluate and compare 

developed packages in terms of such properties as modularity, intra-module cohesion, 

and inter-module coupling.  The usage of our research does not limit to the open source 

software systems.  Software companies can easily adopt our approach as a tool to 

examine the architectural structure of their software products since they have the full 

control of their own software source code.  Although C-based software packages are 

used to perform our analysis, a similar framework can be easily created in order to 

analyze software systems that are built on other programming languages.  For example, 

we can easily construct a software unit dependency network for a Java-based system by 

defining vertex as a Java object and edge as a Java object reference.  Once the 

dependency network has been constructed, the similar set of topological measures can be 

calculated to examine the software system.    

Our study opens up several avenues for further research.   

First, while we have empirically studied several distinct open-source software 

packages, investigating networks built from historical versions of the same software 

package may generate useful insights into the ways software grows and changes over 

time and may be more appropriate in revealing the true scaling properties of the 

networks.   
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Second, while we have modeled software packages as un-directed, un-weighted 

networks of functions, considering the direction and weight of function calls may reveal 

additional useful information about software packages.   

Third, while we have interpreted the degree distribution as being approximately 

power-law, future research may conduct finer analysis (e.g., fitting the degree distribution 

with a stretched-exponential) to reduce the statistical noise on the tail.   

Fourth, while all five software packages are considered “popular” or “good quality” 

software systems, comparing the software systems with different popularities in the same 

domain would be worth more attention.  For example, comparing several Instant 

Messenger (IM) software systems with different download rates will be likely to reveal 

more insight of successful software packages.   

Fifth, while all five software packages investigated in our empirical study are 

written in C, a procedural language, it would be interesting to examine software packages 

written in Object-Oriented (OO) languages, such as C++, C#, and Java, and see how OO 

features, such as encapsulation, inheritance, and polymorphism, affect the structures of 

software packages and the processes governing their development. 

Network-based analysis of software packages and software engineering efforts 

provides many intriguing possibilities for future research.  Social networking theory is 

likely to provide guidelines on community discovery when analyzing software authorship 

networks (Watts, Dodds et al. 2002).  Bipartite graph analysis may provide a framework 

for analyzing the relationships between developers and software components.  Further 
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research and improved understanding may lead to the development of useful metrics that 

provide guidance to engineers and analysts in the development of complex software 

systems. 
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CHAPTER 3 ANALYZING OPEN SOURCE SOFTWARE DEVELOPER 

COLLABORATION NETWORKS 

3.1 Introduction 

As the size and the complexity of software applications grow over the past few 

decades, the collaboration among software developers becomes increasingly important 

(Hahn, Moon et al. 2008; Singh 2011).  That a small number of developers finish a 

software application single-handedly is no longer a common scenario.  Software 

developers have to rely on other developers in order to deliver the software products on 

time and with satisfying quality.  Thus analyzing software developer collaborations is of 

great interest to both researchers and software engineering practitioners.  For example, 

people are interested to know how many members a functional development team should 

be composed of in order to have the optimal performance, how balanced the work load of 

each team member should be, and how many tasks the technical leader of the team should 

have at any given time.  The answers to those questions will provide useful insight for 

software practitioners in order to achieve a better performance in software development 

process.  However the software developer collaboration is usually complicated for large 

software systems.  Specifically how to define a collaborative relation between two 

developers is hard to be unanimously agreed.  Furthermore in commercial companies 

the software developer structures are usually confidential and not available for the 
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general public to analyze.  The complexity of the developer collaboration and the lack of 

collaboration practice data result in the fact that few research works have been delivered 

in that domain (Johnson 2006; Colazo 2010).  In this chapter, we aim at analyzing the 

software developer collaborations by leveraging complex network theory.  We choose 

two open source software applications, MediaWiki and Gentoo, for our empirical 

analysis.  We parse through the bug fixing data for those two applications and define the 

collaborative relation among developers by considering the co-working experience on a 

same bug.  Since the numbers of bugs and developers are quite large, we perform our 

analysis by adopting graph theory.  Specifically we construct the bug-developer bipartite 

graphs and the developer-developer collaboration graphs out of the real bug fixing data 

sets.  We then calculate a number of topological measures including the degree 

distributions for those graphs.  Our findings on the topological characteristics can 

motivate further studies on developer collaborations.   

The rest of the chapter is organized as follows.  We first introduce some 

background information in Section 2.  In Section 3, we briefly describe the two data sets 

that we choose as our empirical study subjects.  Section 4 explains how we construct the 

bug-developer bipartite networks and the developer-developer collaboration networks for 

the two real data sets.  In Section 5, we introduce several important topological 

measures that are widely leveraged in network analysis.  Our empirical findings are 

summarized in Section 6.  Finally, we conclude the chapter with a summary of 

contributions and a discussion of possible future research directions in Section 7. 
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3.2 Background 

We anticipate that the bug fixing processes and developer collaborations of 

different open source software packages share some common underlying properties.  

For example, it is intuitively correct that a large number of bugs are fixed by a small 

number of developers who are more experienced.  On the other hand, the majority of 

developers is not as much experienced, and thus is involved in a less number of bugs that 

are fixed.  That intuition follows the same mechanism of the rich get richer model 

(Barabasi and Albert 1999) which is the most popular generative model for the scale free 

property.   

In complex network theory, a network is described as scale free if the network’s 

degree distribution follows the power law (Newman, Strogatz et al. 2001).  A detailed 

description of the power law and the scale free property has been introduced in Section 

2.5.5.   

 

3.3 An Empirical study with software bug-developer data 

From the bug repositories, we have downloaded and crawled the bug and developer 

data of MediaWiki (https://bugzilla.MediaWiki.org/) and Gentoo (http://bugs.gentoo.org).  

We chose those two data sets because both software systems are considered successful in 

its application domain.  At this stage of our research, we are more interested to analyze 
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the successful software systems than unsuccessful ones.  While each software system 

may bear its unique software architecture, development process and project management 

method, we hope to demonstrate some common characteristics in bug-fixing and 

developer collaboration process.  

Both data sets have the same data format.  For each bug entry, either data set 

contains the following six data fields: bug id, developer id (denoted by developer’s email 

address), time stamp, subject, removed content, and added content.  Table 3.1 shows an 

example of the data entry.  

 

Table 3.1 Bug developer data entry example 

Bug 

ID 

Developer Time Subject Removed Added 

1 joe@hot.com 

2006-11-29 

21:45:59 

Status  NEW 

1 joe@hot.com 

2006-11-30 

23:55:29 

Status NEW RESOLVED 

2 jane@cool.com 

2006-11-10 

20:18:32 

AssignedTo jim@Jmail.com jane@cool.com 
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In Table 3.1, the primary key is the combination of bug id, developer and time.  

The bug ID alone can not be used as the primary key of that table.  As shown in Table 

3.1, a bug, identified by an integer, may have multiple entries in a data set.  Each entry 

indicates a status change of the bug.  When the “Added” field is “RESOLVED,” it 

indicates the bug is fixed.  Keep in mind a bug may reappear in the table after it is 

resolved.  The reappearing scenario is common in the software engineering field which 

indicates the same bug is detected again after that bug is considered fixed.   

The combination of bug ID and developer can not serve as the primary key either 

since there are duplicated bug-developer pairs in either one of the data sets.  As shown 

in Table 3.1, the developer joe@hot.com and bug 1 are associated on two different data 

entries.  The differences between those two entries lie in “Time,” “Removed,” and 

“Added” fields.  Intuitively, the first entry indicates that bug 1 was discovered by the 

developer joe@hot.com.  The second entry which was added about a day later reflects 

the fact that bug 1 was fixed by the same developer.   

In this chapter, we will only consider the associative relations between bugs and 

developers, and will ignore the context of how those bugs and developers are related.  

Namely, we are only interested at the first two columns, Bug ID and Developer, and not 

the last four columns in Table 3.1.  If we only consider Bug ID and Developer, the first 

two rows in Table 3.1 demonstrate that the same pair of bug ID and developer, e.g. 

joe@hot.com and bug 1, can appear on multiple data entries.  In this chapter we refer 
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multiple data entries associating with the same pair of bug and developer the duplicated 

bug-developer pairs.   

In the following sections, we will discuss two different analysis methods depending 

on how we treat bug-developer duplications.  In the first analysis method, we allow and 

consider the bug-developer duplications.  Secondly, we ignore the bug-developer 

duplications, since our main focus of this research work is whether a specific bug and a 

specific developer are related than how strongly that pair of entities is related.   

 

Table 3.2 Basic statistics about the two bug-developer data sets 

Package 
Number 

of Bugs 

Number of 

Developers 

Number of 

Bug Entries 

Number of Unique 

Bug-Developer Pairs 

MediaWiki 16,263 2,646 86,265 35,656 

Gentoo 218,387 20,322 1,232,735 580,974 

 

Table 3.2 shows the basic statistics of the two real world bug-developer data sets.  

The numbers of bugs and developers count unique bugs (identified by an integer) and 

developers (identified by an email), respectively.  The number of bug entries counts the 

total number of entries in the data sets by considering duplicated bug entries or developer 

entries. For example, in Table 3.1, the number of bug entries is 3, the number of bugs is 2 

(bug 1 and bug 2), and the number of developers is 2 (joe@hot.com and jane@cool.com).  

The number of unique bug-developer pairs excludes the duplications of bug-developer 
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pairs.  In Table 3.1, the first two rows will count 1 since they are both regarding bug 1 

and joe@hot.com.  Thus the number of unique bug-developer pairs is 2.  

 

3.4 Network construction 

As the sizes of the two bug-developer data sets are very large, we choose a network 

approach to perform our analysis because network theory barriers the natural strength of 

analyzing large and complicated systems without loosing the overall system level 

characteristics.   

To start the network analysis, we need to construct a network out of the real world 

bug-developer data set.  We first construct a developer-bug bipartite network.  A 

bipartite network is composed of two disjoint sets of vertices.  Every edge connects a 

vertex in each one of the disjoint sets.  There are no edges between any vertices within a 

set.  For our data set, each developer is represented by a vertex.  All vertices denoting 

developers form a set of developer vertices.  Similarly we form a set of vertices each of 

which represents a bug.  Since every data entry in the data set indicates a relation 

between a bug and a developer, naturally that data entry can be represented by an edge 

connecting a developer vertex and a bug vertex.  Since there are no data entries referring 

two bugs or two developers, it eliminates the possibility of an edge within two developer 

vertices or two bug vertices.  Thus, the developer-bug data set forms a bipartite network 

by default.   
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Fig. 3.1(a) illustrates an example of the bipartite network.  Specifically there are 

four developers denoted by four vertices, A, B, C and D.  Five bugs are involved whom 

are represented by five vertices, 1, 2, 3, 4 and 5.  Developer vertices and bug vertices 

form two disjoint sets of vertices.  All the edges are between the two disjoint sets and 

never within a set.  For example, an edge B2 indicates a data entry that B changes the 

status of bug 2.   

The bipartite graph is undirected as the direction is meaningless due to the different 

logic nature of two disjoint sets.  The bipartite network could be converted to a weighted 

network.  Note in Fig. 3.1(a) there are two edges between Developer A and Bug 1.  

Those two edges represent two data entries containing A and 1.  This is the same 

scenario regarding the duplicated bug-developer pairs that we have demonstrated in Table 

3.1.  If there exists more than one edge connecting two vertices, the network is called a 

multi network or multi-graph.  To ease the analysis of the multi network, we combine all 

the edges connecting a pair of vertices and assign the number of edges combined to be 

the weight of that combined edge.  Thus the resulting network becomes an undirected, 

weighted bipartite network as shown in Fig. 3.1(b).  This graph represents the scenario 

that duplicated bug-developer pairs are perceived.  

As explained above, we are more interested at whether a specific bug and a specific 

developer are related than how strongly that pair of entities is related.  We then can 

ignore the duplicated bug-developer pairs observed in Fig. 3.1(a).  Namely we can 
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ignore the second edge connecting developer A and bug 1.  The resulting graph is 

shown in Fig. 3.1(c).  It is an undirected, un-weighted bipartite network.   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3.1 Bug fixing network construction 

(a): Developer-bug bipartite multi-network;  

(b): Developer-bug bipartite weighted network; 

(c): Developer-bug bipartite un-weighted network;  

(d): Developer-developer collaboration un-weighted network 
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To better understand the collaboration patterns among software developers, we 

construct a developer-developer collaboration network out of the developer-bug bipartite 

network.  Again we denote a developer with a vertex.  Then we define an edge 

between a pair of vertices to be the collaborative relation between the two developers 

represented by those two vertices.  Specifically, if two developers have worked on the 

same bug at least once, we would add an edge between those two developer vertices.  

Fig. 3.1(d) is the developer-developer collaboration network extracted out of the 

developer-bug bipartite network in Fig. 3.1(c).  Note both Fig. 3.1(b) and (c) will yield 

the same developer-developer collaboration network based on our definition.  Our 

definition only considers whether two developers have worked on the same bug or not.  

The number of bugs that both developers have worked on together does not have any 

impact on the resulting developer-developer collaboration network.  To keep the 

network construction logically simple, we choose Fig. 3.1(c) to extract the 

developer-developer collaboration networks.   

As shown in Fig. 3.1(a), both developers A and C have worked on bug 1.  Thus 

there should be an edge connecting developer A and developer C in Fig. 3.1(d).  Based 

on the same logic, the developers A, B and D have worked on bug 2.  Thus developers 

A, B, and D should be connected to each other in the developer-developer collaboration 

network.   
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The developer-developer collaboration network we construct is un-directed.  At 

this stage, we do not consider the roles of developers, e.g. who is in charge in the 

bug-fixing process.  Thus the developer-developer collaboration network does not carry 

the information such like assign-to, which implies that the edges are undirected.   

In addition, we ignore the weight in the developer-developer collaboration network.  

Note in Fig. 3.1(c), the fact that developers A and D have worked on bug 2 adds an edge 

between A and D in Fig. 3.1(d).  Moreover, A and D have also worked on bug 3 

together which indicates another edge should be added to connect those two developers.  

However, in this research work, we are more interested to study whether two developers 

have collaborated rather than how closely they have collaborated.  Therefore, we 

intentionally ignore the weight of the developer-developer collaboration network 

(Newman 2004).   

Some data edges in the developer-bug network do not play any role in the 

developer-developer collaboration network.  For example, in Fig. 3.1(c), developer A 

has worked on bug 5, and developer C has worked on bug 4.  Since they are the only 

developers who have worked on those two bugs independently, there is no collaborative 

work among developers.  Therefore those two data entries do not change anything in 

Fig. 3.1(d).  

Lastly, we do not consider self-loops in the developer-developer collaboration 

network.  As shown in Fig. 3.1(a), developer A has two edges connecting bug 1.  From 

the network point of view, the developer A is collaborating with himself which implies a 
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self-loop from vertex A to itself in Fig. 3.1(d).  However the scenario that a developer 

inputs more than one data entry in the bug-developer data set should not lead to the belief 

that the developer is collaborating with himself.  In order to keep our concentration on 

the subject of developer collaborations, we ignore the self loops in Fig. 3.1(d).  That is 

another reason why we choose Fig. 3.1(c) instead of Fig. 3.1(b) to extract the 

developer-developer collaboration networks.   

In summary, we will analyze three networks for each one of the MediaWiki (Wiki 

for short) and Gentoo data sets: developer-bug weighted bipartite networks, 

developer-bug un-weighted bipartite networks, and developer-developer collaboration 

networks.  For each one of the bipartite networks, we will consider two scenarios: bug 

side and developer side.  We will discuss the detail of the two sides of a bipartite 

network in the following sections.   

 

3.5 Topological metrics  

Table 3.3 reuses some notations defined in Table 2.2.  Those notations are 

redefined because, unlike Table 2.2, Table 3.3 defines the symbols that can be used for 

bipartite networks.   

Similar to Table 2.2, the degree of node i , 
i

k , is the number of edges connected to 

that vertex even for bipartite networks.  As claimed above, we will consider two 

scenarios for each bipartite network from either the bug side or the developer side.  
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From the bug side, each vertex denotes a bug, and thus 
i

k  is the number of developers 

that the bug is associated with.  On the other hand, from the developer side, each vertex 

represents a developer.  The value of 
i

k  is the number of bugs that the individual 

developer has been involved in.   

 

Table 3.3 Symbols of network measures for bipartite networks 

Symbol Measure 

i
k  Degree of node i , i.e., the number of edges connected to the node 

k  

Average degree of all nodes. For bipartite networks, average degree 

of all nodes in a disjoint vertex set.  

( )p k  

The fraction of nodes in the network that have degree k , or 

equivalently, the probability that a node chosen uniformly at random 

has degree k  

 

The average degree k  is the arithmetic mean of the degree values of all the 

vertices in the network set.  For a bipartite network, the average degree k  is the 

arithmetic mean of the degree values of all the vertices in either one of the disjoint set of 

the network.  A developer-bug bipartite network has two average degree values, one 

from the bug side, the other from the developer side.   From the bug side, k  is the 
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average of degrees of all bugs.  Based on the same logic, k  is the average degree of all 

developers from the developer side of the bipartite network.   

Degree distribution is the distribution of ( )p k  which is the number of nodes in the 

network that have degree k .  Degree distribution  is usually displayed by plotting 

( )p k  against the sorted k  values.  For a bipartite network, ( )p k  is calculated 

separately from either the bug side or the developer side.   

 

3.6 Empirical findings 

Leveraging the topological metrics described in the above section, we calculate the 

topological characteristics for Wiki and Gentoo data sets.  As described above, we 

analyze three networks for each data set: (1) developer-bug bipartite weighted networks, 

(2) developer-bug bipartite un-weighted networks, and (3) developer-developer 

collaboration un-weighted networks.  For the bipartite networks, we consider two 

scenarios from either the bug side or the developer side.   

By analyzing the above networks, we hope to discover some common properties 

shared by both data sets.  For example, as explained in Section 3.2, a small number of 

developers are usually involved in a large number of bug fixing processes.  We hope 

that the “rich get richer” mechanism can be supported by the network degree 

distributions.  We also hope to reveal some insights of the bug and developer’s relations 

by comparing the bug side and the developer side of the bipartite networks.   
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Table 3.4 Bug fixing data degree information 

Package Network 
Side (If 

Bipartite) 

Number of 

Vertices 

Number of 

Edges 

Average 

Degree 

Wiki 

Weighted 

Bipartite 

Bug 16,263 86,265 5.304 

Developer 2,646 86,265 32.602 

Un-weighted 

Bipartite 

Bug 16,263 35,656 2.192 

Developer 2,646 35,656 13.475 

Dev-Dev N/A 2,646 101,152 38.228 

Gentoo 

Weighted 

Bipartite 

Bug 218,387 1,232,735 5.645 

Developer 20,322 1,232,735 60.660 

Un-weighted 

Bipartite 

Bug 218,387 580,974 2.660 

Developer 20,322 580,974 28.588 

Dev-Dev N/A 20,322 2,360,860 116.172 

 

The numerical results are displayed in Table 3.4.  We use Wiki data set as the 

example to explain the results.  Gentoo data set should follow the same logics.  In the 

weighted bipartite network, the number of vertices from the bug side is 16,263.  That 

value indicates there are 16,263 bugs in the data set which matches the results in Table 

3.2.  The number of edges, 86,265 shows how many developers, duplications 

acceptable, are associated with those bugs.  Note the numbers of edges are the same for 
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the bipartite networks from either the bug side or the developer side.  That is 

understandable if analyzing the examples shown at Fig. 3.1(b) and (c).  The average 

degrees from the bug side and the developer side are 5.304 and 32.602, respectively.  

The intuition of those two numbers is that, on average, each bug needs about 5 

developer’s entries to get fixed, and each developer is involved in over 32 bug fixing 

entries.  Note those numbers are for the weighted network meaning duplications of 

bug-developer pairs are acceptable.  If those duplications are ignored, the resulting 

networks are un-weighted bipartite networks.  The average degrees from the bug side 

and the developer side are 2.192 and 13.475, respectively.  That is, out of the 5.304 

developer’s data entries for each bug, only 2.192 unique developers are involve for that 

bug.  Based on the same logic, each developer has input 32.602 bug data entries, with 

13.475 unique bugs.  The ratio is 5.304 / 2.192 = 32.602 / 13.475 = 2.419.  That means, 

on average, each developer needs to deal with the same bug 2.419 times before that bug 

is fixed.   

Based on the same logic, we calculate the topological measures for the Gentoo data 

set.  According to the values of the “Number of Vertices” and the “Number of Edges” in 

Table 3.2, we can easily conclude that Gentoo’s bipartite networks are much larger in 

size than Wiki’s networks.  After carefully examining the results, we realize the average 

degrees of those two data sets do not show significant difference from the bug side, 

namely 5.304 vs. 5.645, and 2.192 vs. 2.660.  However, the average degrees of the two 

data sets are much different from the developer side, namely 32.602 vs. 60.660 and 
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13.475 vs. 28.588.  Gentoo’s average degrees from the developer side are about doubled 

compared with Wiki’s for both weighted and un-weighted networks.  The intuition 

behind that interesting finding is even the size, and hence the complexity of the software 

application increases, each bug’s complexity remains about the same.  Thus it does not 

take significantly more time for the developers to fix an individual bug.  That intuition 

leads to the observation that the average degree from the bug side remains about the same 

regardless the size of the application.  On the other hand, as the size of the application 

increases, each developer needs to be involved in fixing more bugs.  Therefore the 

average degree from the developer side increases as the size of the application increases.   

Lastly we examine the developer-developer collaboration networks.  As we have 

explained in the above section, the developer-developer collaboration networks we have 

constructed are un-weighted, undirected, and simple (no self loops or multi edges) 

networks.  First observation that we can easily recognize is the developer-developer 

collaboration networks have a lot more edges than the un-weighted bipartite networks, 

namely 101,152 vs. 35,656 and 2,360,860 vs. 580,974.  Note we construct the 

developer-developer collaboration networks out of the un-weighted bipartite networks, 

thus we have to use the un-weighted bipartite networks for the comparison instead of the 

weighted bipartite networks.  The explanation of the dramatic increase of the number of 

edges is based on the so-called “developer cliques (Newman and Girvan 2004).”  If a 

number of developers have worked on the same bug, those developers will form a clique.  

In a clique, every developer is connected to every other developer within that clique.  If 
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a clique is composed of N  developers, that clique will yield ( 1) / 2N N −  edges in the 

resulting developer-developer collaboration network.   

Our second observation regarding the developer-developer collaboration networks 

is the average degree increases from 38.228 to 116.172 as the size of the network 

increases.  The insight is as the size and complexity of the software application grows, 

each developer is likely to be involved in fixing more bugs.  The observation is 

intuitively consistent with software development practice.   

Fig. 3.2 to Fig. 3.5 are the degree distributions of the bipartite networks: weighted 

and un-weighted, from the bug side and from the developer side.  In order to compare 

the differences and the similarities between Wiki and Gentoo data sets, we plot the two 

data sets on every one of the degree distribution graph.   

Fig. 3.2 shows the degree distribution results for the bug-developer weighted 

bipartite networks from the bug side.  The majority middle parts of the both curves are 

close to straight lines; hence possess semi-scale free properties.  Both data sets, Wiki 

and Gentoo, show noticeable dips at the very first points where the degree value 1k = .  

That is to say that the number of bugs that have only one bug data entry is less than the 

number of bugs that have two, or three data entries.  After carefully examining the 

source data, we realize this property is due to the nature and some special rules that the 

bug fixing procedure caries.  Specifically when a bug is found, a bug data entry with 

“NEW” in the “Added” field will be input to the data set as shown in the example Table 

3.1.  After the bug is fixed, another data entry with “RESOLVED” in the “Added” field 
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will be input to the data set.  Therefore most bugs have at least two data entries in the 

data sets which results in a limited number of bugs with only one data entry.  Note those 

two data entries, “NEW” and “RESOLVED,” that an individual bug has been involved in 

may be entered by one developer.  If duplications of bug-developer pairs are ignored, 

the resulting degree distribution will show a different shape as shown in Fig. 3.3.  
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Fig. 3.2 Degree distribution: bug-developer weighted bipartite networks from bug side 

 

Fig. 3.2 also has a long hockey tail for large degree values which indicates that very 

few bugs with significantly large number of data entries.  That is understandable when 

duplicated bug-developer pairs are allowed.   
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Fig. 3.3 Degree distribution: bug-developer un-weighted bipartite networks from bug side 

 

Comparing Fig. 3.2 and Fig. 3.3 clearly shows the effects of the network weight.  

Recall the weighted bipartite networks reflect the scenarios that the duplicated 

bug-developer pairs are allowed.  On the other hand, the un-weighted bipartite networks 

ignore the bug-developer pair duplications.  If the bug-developer pairs are ignored, the 

dips shown in Fig. 3.2 is significantly reduced as shown in Fig. 3.3.  As explained in the 

paragraph above, an individual bug usually has at least two data entries, “NEW” and 

“RESOLVED.”  That is the reason that causes the dips in Fig. 3.2.  However if both 

data entries are entered by the same developer, by the definition of un-weighted bipartite 
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networks, only one edge is considered for that specific bug.  Therefore, the number of 

bugs with only one data entry may not be necessarily limited.  That is why the dips are 

hardly recognizable in Fig. 3.3.   

Moreover, because of the same reason, the degree values for bugs with very high 

degrees are also reduced.  Intuitively speaking, a complex bug may be associated with 

many data entries but many of those data entries may be entered by a limited set of 

developers.  Thus the hockey tail in Fig. 3.3 is dramatically shortened compared with 

Fig. 3.2.  Therefore ignoring the duplications of bug-developer pairs makes the degree 

distributions more scale free.   

Fig. 3.4 and Fig. 3.5 are to show the bipartite networks degree distributions from 

the developer side.  Those two graphs describe developers’ involvements with bugs.  

Both graphs show very strong scale free trends.  For weighted networks, the head of the 

curves have small dips for both data sets.  On the other hand, Fig. 3.5, the un-weighted 

networks do not have dips for both Wiki and Gentoo data sets.  The difference on the 

dips between those two figures can be explained easily by the duplicated bug-developer 

pairs following the similar logics as shown in the paragraph above.   

Unlike the graphs from the bug side (especially Fig. 3.3), both Fig. 3.4 and Fig. 3.5 

have long hockey tails.  The long hockey tails imply that there exist a small set of 

developers who are heavily involved in fixing a large number of bugs.  Those 

developers can be considered as the technical leads in the bug fixing process.   
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From Fig. 3.2 to Fig. 3.5, we observe a common characteristic that occurs in all 

four graphs: both Wiki and Gentoo networks have similar shapes of degree distributions.  

Furthermore Gentoo’s graphs are always above Wiki’s graphs, and they are always in 

parallel.  The two applications are with quite different sizes and in different domains.  

The similar degree distributions shared between them seem to suggest that there exist 

common underlying characteristics in the bug fixing process shared by open source 

software systems across application size and domain.   
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Fig. 3.4 Degree distribution: bug-developer weighted bipartite networks from developer 

side 
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Fig. 3.5 Degree distribution: bug-developer un-weighted bipartite networks from 

developer side 

 

Fig. 3.6 shows the degree distributions of developer-developer collaboration 

un-weighted networks.  Again, both the Wiki and Gentoo data sets exhibit similar 

degree distribution curves.  The major parts of the two curves form straight lines which 

indicate both distributions are scale free.  The scale free property implies that the more 

popular a developer is, the more likely other developers are to collaborate with that 

individual developer.  The scale free property makes intuitive sense in software 

engineering.   
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Both curves in Fig. 3.6 have heavy hockey tails that imply that there exists a small 

set of developers with extremely high collaborative connections with other developers.  

Those developers are usually leaders in the bug fixing process which is consistent with 

our observations in the previous paragraphs.  At the beginning of the two curves, small 

dips are observed for both data sets.  The dips are corresponding to the degree value 

1k = .  The dips suggest that the number of developers that have only one connection to 

another developer is limited.  The observation can be intuitively explained by the fact 

that developers are usually working with at least two other developers.   

 

-2

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

 

Fig. 3.6 Degree distribution: developer-developer collaboration un-weighted networks 
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3.7 Conclusions and future study 

The software developer collaboration is an important factor in software 

development process.  The quality of the developer collaboration has a direct impact on 

the overall software development performance, and thus to the quality of the final 

software product.  In our study, we propose a framework to analyze the software 

developer’s collaborative relations by leveraging network theory.  Specifically we 

choose the bug fixing data sets for two real software applications, MediaWiki and 

Gentoo, to perform the empirical analysis.  Two developers are defined as collaborated 

if they have worked on at least one bug together.  Based on that definition, we construct 

the bug-developer bipartite networks and the developer-developer collaboration networks 

for those two bug data sets.  We then calculate several topological measures for those 

constructed networks.  Our empirical results indicate that all networks possess scale free 

properties.  For the bipartite networks, we find and explain the average degree from the 

developer side is related to the size of the open source software package.  On the other 

hand, the average degree from the bug side is unrelated to the software package size.  

Our findings and framework can be leveraged as the infrastructure for later research in 

the developer collaboration field.   

Some limitations of our empirical research lead to some interesting follow-ups in 

the near future.  First of all, the developer-developer collaboration networks that we 

constructed are un-directed.  We do not consider the roles that each developer plays in 
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fixing an individual bug.  In the next step of our research, we may consider the 

heterogeneous roles that developers play for each bug.  For example, a developer may 

assign a bug fixing task to another developer which implies the first developer is the 

leader of the team and second is the follower.  The detailed relation between two 

developers may be revealed by the timestamp of the bug data entry or the keywords in 

“Added” and “Removed” fields as shown in Table 3.1.  With that detailed relation 

information, we can construct directed developer-developer collaboration networks where 

the direction indicates the leadership between those two developers.  The directed nature 

of relations among developers differentiates the bug-fixing developer collaboration from 

many other collaborative networks, such as scientific collaborations (Newman 2001) and 

movie actor collaborations (Watts and Strogatz 1998), where relations between two 

connected people, e.g. scientific scholars or movie actors, do not carry strong directional 

information.   

Second possible follow-up research may extend the current research by considering 

the weight of the developer-developer collaboration networks.  As explained in previous 

sections, we ignore the weight of the collaboration networks which means we consider 

whether two developers have collaborated rather than how closely those two developers 

have collaborated.  In reality if two developers have worked together on multiple bugs, 

the intensive collaborative relation between the two developers should be valued.  In the 

future study, we may extend the network construction by incorporating 

developer-developer collaboration weight.  We hope the more detailed consideration in 
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the network construction will result in more interesting findings to researchers and 

software practitioners.  
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CHAPTER 4 COMPARISON OF TWO CLUSTERING COEFFICIENT 

DEFINITIONS 

4.1 Introduction 

Complex network analysis has gained more and more attention recently.  It is 

widely adopted in analyzing real world complex systems including software systems 

(Albert and Barabasi 2002; Newman 2003; Potanin, Noble et al. 2005).  One of the most 

useful topological measures in the network analysis is the clustering coefficient.  

Clustering coefficient measures the extent to which being a neighbor is a transitive 

property.  Clustering coefficient has two commonly used definitions (Watts and Strogatz 

1998; Newman 2001; Newman, Watts et al. 2002; Newman 2003).  The first definition 

is proposed by Watts and Strogatz, and the second is by Newman.  Those two 

definitions share some common considerations and, at the same time, have their own 

unique angles in measuring the clustering circumstances.  However, very few attempts 

have been proposed in order to compare those two definitions.  Most researchers just 

adopt one of them based on their own needs when conduct their research work.  This 

chapter intends to fill the gap by proposing an analytical comparison between the two 

clustering coefficient definitions invented by Watts-Strogatz and Newman, respectively.  

The comparison is performed by analytical derivations showing the mathematical 

relations between those two definitions.  Some numeric properties of the two definitions 
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are presented.  Lastly a simulated network example is leveraged to show the impact 

factors of the clustering coefficient values based on those two definitions.  Our research 

can be potentially leveraged by software practitioners to analyze software product 

structure, development processes, and engineer collaborations using complex networks.   

The rest of the chapter is organized as follows.  We first introduce some 

background information in Section 2.  In Section 3, we briefly explain the topological 

metrics that we will be using in this chapter.  Section 4 presents the numeric analysis 

and the derived formulas of the two clustering coefficient definitions.  In Section 5, we 

introduce several numeric properties of those two definitions including the impact factors 

of the clustering values for each definition.  Finally, we conclude the chapter with a 

summary of contributions in Section 7. 

 

4.2 Background 

As an important topological measure in graph theory (Tutte 1984), clustering 

coefficient measures the extent to which being a neighbor is a transitive property 

(Eggemann and Noble 2011).  Clustering coefficient has two commonly used definitions 

(Watts and Strogatz 1998; Newman 2003).  We reuse the clustering coefficient 

definitions and descriptions in Section 2.5.6 to perform our analysis.  Equations 2.1 to 

2.4 will be reused as the starting point to present our derivations.   

 



www.manaraa.com

79 

 

4.3 Topological metrics introduction 

We reuse the notations in Table 2.2 to perform the analysis for this chapter.  

Moreover, we present some additional symbols in Table 4.1 that we will be using for the 

rest of this chapter.  As explained above, the networks that I analyze are un-directed and 

un-weighted networks.  The networks are simple networks meaning no self loops or 

multiple edges connecting two vertices are allowed.   

0N  is the number of the vertices in the network which is commonly referred to as 

the size of the network.  Unlike in Table 2.2, in Table 4.1 N  is the number of vertices 

whose degrees are greater than 1. N  is useful when we calculate the clustering 

coefficient.  On the other hand, 0N  is not directly usable for calculating the clustering 

coefficient because the vertices with degree 1 do not have any effect on the clustering 

coefficient value.  The variables 
i

k  and 
i

a  have the same meanings as in the previous 

sections.  In order to study the detailed information of an individual vertex’ connections, 

we define two additional variables, ( )i

a
T  and ( )i

pT .  ( )i

a
T  is the number of triangles 

around vertex i .  A triangle is a group of three vertices that connect to each other.  

( )i

pT  is the number of triples centered at vertex i .  A triple centered at vertex i  is a 

group of three vertices that vertex i  is connected to the other two vertices.  
a

T  and 
p

T  

are aggregated variables that count the total numbers of triangles and triples, respectively, 

in the entire network.  ( )i

WS
C  is the clustering coefficient in the Watts-Strogatz definition 

for vertex i  that is connected to at least two other vertices.  Finally 
WS

C  and 
NW

C  
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are the dependent variables that are the clustering coefficient in the Watts-Strogatz 

definition and Newman definition, respectively, for the entire network.   

 

Table 4.1 Symbols of network measures 

Symbol Measure 

0N  Number of vertices in the network, referred to as the network size 

N  Number of vertices in the network whose degrees are greater than 1 

i
k  Degree of vertex i , i.e., the number of edges connected to the vertex 

i
a  Number of edges among the neighbors of vertex i  

( )i

a
T  

Number of triangles around vertex i . A triangle is a group of three 

vertices that connect to each other.  

( )i

pT  

Number of triples centered at vertex i . A triple means a single vertex 

connected to two other vertices.  

a
T  Total number of triangles in the network 

p
T  Total number of triples in the network 

( )i

WS
C  

Clustering coefficient in the Watts-Strogatz definition for vertex i  with 

the degree value greater than 1 

WS
C  Clustering coefficient in the Watts-Strogatz definition for the network 

NW
C  Clustering coefficient in the Newman definition for the network 
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4.4 Numeric analysis 

Using the symbols that we defined in Table 4.1, we present the formulas to 

calculate 
WS

C  and 
NW

C .  Based on equations 2.1 to 2.4, we present 
WS

C  and 
NW

C ’s 

calculations in the following three equations.   

( )

( 1) / 2

i i
WS

i i

a
C

k k
=

−
 (4.1) 

( )

1

1 N
i

WS WS

i

C C
N =

= ∑  (4.2) 

3 a
NW

p

T
C

T

×
=  (4.3) 

Based on the definition, 
i

a  is the number of edges among the neighbors of vertex 

i .  Since every neighbor is connected to vertex i  by definition, every edge among 

vertex i ’s neighbors corresponds to a triangle around vertex i .  On the other hand, 

every triangle around vertex i  must correspond to an edge connecting a pair of vertex 

i ’s neighbors.  Thus,  

( )i

a i
T a=  (4.4) 

( )i

pT  is the number of triples centered at vertex i .  A triple centered at vertex i  

is a group of three vertices that vertex i  is connected to the other two vertices.  Every 

triple centered at vertex i  corresponds to an unordered pair of vertex i ’s neighbors.  

Thus the total number of triples centered at vertex i  is the total number of different 

combinations of vertex i ’s un-ordered neighbors which is ( 1) / 2
i i

k k − .   

( ) ( 1) / 2i

p i iT k k= −  (4.5) 
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Implanting equations 4.4 and 4.5 to equation 4.1 leads to a new formula to calculate 

( )i

WS
C  and then 

WS
C . 

( )
( )

( )

i
i a

WS i

p

T
C

T
=  (4.6) 

( )

( )
1

1
iN

a
WS i

i p

T
C

N T=

= ∑  (4.7) 

We now consider the formula for 
NW

C .  The following two equations are quite 

straightforward.  
a

T  and 
p

T  are aggregated variables of ( )i

a
T  and ( )i

pT , respectively.  

Since every triangle is counted three times when considering each vertex i , the total 

number of triangles in the network, 
a

T , should be the summation of ( )i

a
T  divided by 3.  

Moreover ( ) ( ) 0i i

a pT T= = , if 01, 1,..
i

k i N≤ ∀ = .  Thus,  

0

( ) ( )

1 1

1 1

3 3

N N
i i

a a a

i i

T T T
= =

= =∑ ∑  (4.8) 

0

( ) ( )

1 1

N N
i i

p p p

i i

T T T
= =

= =∑ ∑  (4.9) 

We then implant equations 4.8 and 4.9 to equation 4.3, and obtain the formula for 

NW
C  as shown in equation 4.10.   

( )

1

( )

1

N
i

a

i
NW N

i

p

i

T

C

T

=

=

=

∑

∑
 (4.10) 

We will leverage equations 4.7 and 4.10 to compare the two clustering coefficient 

definitions from now on.   
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Starting from equation 4.7, 
( ) ( )

( ) ( )
1

1
Mean of 

i iN
a a

WS i i
i p p

T T
C

N T T=

= =∑ .  Starting from 

equation 4.10, 

( )

( )

1

( )
( )

1

1

Mean of 

1 Mean of 

N
i

ia

i a
NW N i

i p
p

i

T
TN

C
T

T
N

=

=

= =

∑

∑
.  Thus we can say 

WS
C  is the mean of 

the raio 
( )

( )

i

a

i

p

T

T
, and 

NW
C  is the raio of the mean of ( )i

a
T  and the mean of ( )i

pT .   

 

4.5 Numeric properties 

Lower bound. Since ( ) 0, 1,2,...i

a
T i N≥ ∀ = , then both 

WS
C  and 

NW
C  are 

non-negative.  Thus the minimum of the values for both 
WS

C  and 
NW

C variables may 

be zero.  The minimum is zero if and only if ( ) 0, 1, 2,...i

a
T i N= ∀ = .  A formal 

description is listed below.   

0
WS

C ≥  

0
NW

C ≥  

( )0 0, 1, 2,...i

WS NW a
C C T i N= = ⇔ = ∀ =  

In order to satisfy ( ) 0, 1,2,...i

a
T i N≥ ∀ = , the network can be a tree where no cycle 

exists, or a cycle with more than 3 vertices, etc.  Fig. 4.1 shows an example for a tree 

with 8 vertices and a cycle with 5 vertices, respectively.  In conclusion the lower bound 

of 
WS

C  and 
NW

C  is met when there does not exist three vertices that are connected to 

each other in the network.  
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(a) 

 

(b) 

Fig. 4.1 Examples of both 
WS

C  and 
NW

C  are 0  

(a): Tree with 8 vertices; (b): Cycle with 5 vertices.  

 

Upper bound. Since ( ) ( ) , 1,2,...i i

a pT T i N≤ ∀ = , then both 
WS

C  and 
NW

C  are less 

than or equal to 1.  Thus the maximum of the values for both 
WS

C  and 
NW

C variables 

may be 1.  The maximum is 1 if and only if ( ) ( ) , 1,2,...i i

a pT T i N= ∀ = .  A formal 

description is listed below.   

1
WS

C ≤  

1
NW

C ≤  

( ) ( )1 , 1, 2,...i i

WS NW a pC C T T i N= = ⇔ = ∀ =  

In order to satisfy ( ) ( ) , 1,2,...i i

a pT T i N= ∀ = , the network has to be a complete graph 

where every vertex is connected to every other vertices.  Thus 
WS

C  and 
NW

C  values 

meet the upper bound only when the network is a complete graph.  Fig. 4.2 shows two 

complete graph examples with 5 vertices and with 7 vertices, respectively.   
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(a) 

 

(b) 

Fig. 4.2 Examples of both 
WS

C  and 
NW

C  are 1  

(a): Complete graph with 5 vertices; (b): Complete graph with 7 vertices.  

 

Equality. We are interested to explore the conditions where 
WS NW

C C= .  If 

( ) ( ) , , 1,2,...i j

p pT T i j N= ∀ = , then  

( )
( )

( ) (1)
1 1

1 1
iN N

ia
WS ai

i ip p

T
C T

N T N T= =

= =
⋅

∑ ∑  

( ) ( )

( )1 1

(1)
( ) (1) 1

1 1

1

N N
i i

a a N
ii i

NW a WSN N
i ip

p p

i i

T T

C T C
N T

T T

= =

=

= =

= = = =
⋅

∑ ∑
∑

∑ ∑
. 

Since ( ) ( 1) / 2i

p i iT k k= − , thus ( ) ( ) , , 1,2,...i j

p pT T i j N= ∀ =  is equivalent to 

, , 1, 2,...
i j

k k i j N= ∀ = .  Therefore,  

, , 1,2,...
WS NW i j

C C k k i j N= ⇐ = ∀ =  
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Note , , 1, 2,...
i j

k k i j N= ∀ =  is the sufficient condition but not a necessary 

condition.  That is to say, if the degrees of all vertices in a network are the same, then 

WS NW
C C= .   

Fig. 4.3 shows two graph examples that all vertices in the graph have the same 

degrees.  Fig. 4.3(a) is an octahedron with 6 vertices.  Each vertex has a degree 4 and 

each vertex has 4 triangles around it.  Thus 
4

2 / 3
4(4 1) / 2

WS NW
C C= = =

−
.   

Fig. 4.3(b) is a cube with 8 vertices, each of which has a degree 3.  Note each 

vertex has 0 triangle around it which results in 0
WS NW

C C= = .  This example not only 

exhibits the equality between 
WS

C  and 
NW

C , but also fits in the lower bound scenario as 

well.   

 

 

(a) 

 

(b) 

Fig. 4.3 Examples of 
WS NW

C C=   

(a): Octahedron; (b): Cube. 
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Fig. 4.4 Log degree k vs. log count p(k) 

 

Impact of vertices with large degrees.  Recent research findings show that lots 

of real world complex networks possess the scale-free properties (Newman and Watts 

1999; Albert and Barabasi 2000; Albert and Barabasi 2000; Goh, Kahng et al. 2001; Goh, 

Kahng et al. 2001; Cohen, Ben-Avraham et al. 2002; Goh, Oh et al. 2002; Schwartz, 

Cohen et al. 2002; Cohen and Havlin 2003; Goh, Lee et al. 2003; Kim, Goh et al. 2003; 

Vazquez, Boguna et al. 2003) whose degree distributions follow the power law.  

Specifically the logarithmic values of degrees and the logarithmic values of the number 
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of vertices with the same degrees form a decreasing straight line.  Intuitively speaking, 

there are very few vertices with very large degrees, and most vertices have low degrees.  

Fig. 4.4 presents a simulated example of the scale-free network.  

We leverage the above simulated network to further compare the two clustering 

coefficient definitions by Watts-Strogatz and Newman.  Table 4.2 lists some calculated 

results derived from the degree distribution.  The values of Log k and Log Count form a 

decreasing straight line that is presented in Fig. 4.4.  From the logarithmic values, we 

can compute k and count values.  The last column, k(k-1)/2 * count, will be used later to 

analyze 
NW

C .   

 

Table 4.2 Simulated degree distribution 

Log k Log Count k Count k(k-1)/2 * Count 

0 15 1 32,768 0 

2 12 4 4,096 24,576 

4 9 16 512 61,440 

6 6 64 64 129,024 

8 3 256 8 261,120 

10 0 1,024 1 523,776 
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From the previous section, we know 
( ) ( )

( ) ( )
1

1
Mean of 

i iN
a a

WS i i
i p p

T T
C

N T T=

= =∑ .  The value 

of 
WS

C  is an average of ratio 
( )

( )

i

a

i

p

T

T
.  And 

( )

( )
0 1, 1,..

i

a

i

p

T
i N

T
≤ ≤ ∀ = , the values of 

( )

( )

i

a

i

p

T

T
 

are within a limited range from 0 to 1.  If we assume the vertices with the same degrees 

have the similar 
i

a  values, then the value of 
WS

C  is largely depends on the majority of 

vertices who have the same degree values.  Specifically, there are 32,768 vertices with 

the same degree 1.  Those vertices do not have any impact on the clustering coefficient 

based on our definition, so that we can simply ignore those vertices.  There are 4,096 

vertices with degree 4.  Those 4,096 vertices will yield a dominating factor to the overall 

value of 
WS

C  since 
WS

C  is the average of the 4,681 vertices whose degrees are greater 

than 1.  On the other hand, although the one vertex with the degree 1024 is the most 

“popular” vertex of the network, its ( )i

WS
C  only accounts for 1/4681 to the overall 

WS
C  

value.  The impact of the popular vertices is smothered by that of the un-popular 

vertices which are dominating by the vertex count.   

However 
NW

C  is totally different from 
WS

C  in that the few popular vertices are 

the dominating factors to the final value of 
NW

C .  Equation 4.10 states 

( )

1

( )

1

N
i

a

i
NW N

i

p

i

T

C

T

=

=

=

∑

∑
.  

Let us consider ( )i

pT  whose value is ( 1) / 2
i i

k k −  per equation 4.5.  To analyze the 

impact of the popular and un-popular vertices to the mean of ( )i

pT , we aggregate the 

impact of ( )i

pT  for vertices who have the same degree values.  The last column in Table 
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4.2 indicates which set of vertices has the dominating factor.  Although the un-popular 

vertices, with degree 4, have the count advantage (count equals 4,096), the overall 

summation of ( )i

pT  for the un-popular vertices is only 24,576.  On the other hand, the 

one popular vertex with degree 1,024 has a huge impact since its ( 1) / 2
i i

k k −  value is 

523,776.  In the overall ( )

1

N
i

p

i

T
=

∑  value, the one popular vertex has a dominating factor, 

and the 4,096 unpopular vertices do not play an important role.  Fig. 4.5 plots the degree 

k versus k(k-1)/2 * count.   

 Degree Effect

0100000200000300000400000500000600000

0 200 400 600 800 1000 1200k
k(k-1)/2 * cou
nt

 

Fig. 4.5 Degree effect: degree k vs. k(k-1)/2 * count  
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In conclusion the two clustering coefficient definitions, 
WS

C and 
NW

C , has 

different impact factors.  The value of 
WS

C  is dominated by the un-popular vertices 

which have low degree values, and usually the vertex count advantage.  The few popular 

vertices with extremely high degrees do not have much impact on 
WS

C .  On the 

contrary, those few popular vertices play the most important role in calculating 
NW

C .  

The low-degree vertices are not as important as the few extremely popular vertices.   

 

4.6 Conclusions 

Network analysis becomes an important method to study complex systems, and the 

clustering coefficient remains one of the most useful measures in examining network 

characteristics.  This chapter aims to provide an analytical comparison between two 

widely adopted clustering coefficient definitions, 
WS

C and 
NW

C , proposed by 

Watts-Strogatz and Newman, respectively.  Mathematical derivations are presented to 

compare the similarities and the differences between those two definitions.  Our findings 

show that the two definitions both depend on ( )i

a
T  and ( )i

pT , the number of triangles and 

triples, respectively, around vertex i .  The difference between those two definitions lies 

in that 
WS

C  is the mean of the ratio ( )i

a
T  and ( )i

pT , and 
NW

C  is the ratio of the two 

means of ( )i

a
T  and ( )i

pT .  We also examine the lower bounds and upper bounds of those 

two definitions, and the conditions to meet those extreme bounds.  Our further analysis 

shows the impact factors of 
WS

C and 
NW

C  values.  Using a simulated network which is 
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scale-free, we find that the extremely popular vertices have little impact on 
WS

C  due to 

the limited number of those popular vertices.  Whereas those popular vertices are the 

dominating factors in determining the value of 
NW

C .   

Our research findings show detailed properties of the two clustering coefficient 

definitions, 
WS

C and 
NW

C .  It provides researchers more insights when conducting 

network analysis research.  Our findings provide the guidelines on which clustering 

coefficient definition should be used when analyzing a network.  Moreover our results 

give researchers usable hints when a random network model is needed to explain the 

topological measures found in real world complex systems.  Specifically in software 

engineering, software practitioners can leverage our research results to analyze complex 

software products, engineer collaborations, and product development processes if 

complex networks are chosen to conduct the analysis.   
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CHAPTER 5 MODELING DEVELOPMENT PROCESS OF COMPLEX 

SOFTWARE PRODUCTS 

5.1 Introduction 

As the development expenses of software products increases dramatically over the 

years, more and more software engineering practitioners are motivated to discover the 

optimal or semi-optimal software development patterns which can assure a good quality 

software product in the end (Jacobson, Booch et al. 1999; Sarkar, Kak et al. 2008; 

Chhabra and Gupta 2010; Eichinger, Kramer et al. 2010; Ma, He et al. 2010).  A good 

software development pattern can save a great deal of resource waste during the 

development process, and significantly reduce the risk of reworking or overhauling a 

developed software product (Rine and Sonnemann 1998; Frakes and Succi 2001).  Since 

most software practitioners are overwhelmingly result driven (Sarkar, Kak et al. 2008; 

Shin, Meneely et al. 2011; Taherkhani, Korhonen et al. 2011), the final software products 

remain the major or, in some cases, the only focal point in the software lifecycle which 

results in the lack of data and effort for software development analysis.  Very little 

research or analysis effort has been performed in exploring the insight of the software 

development process (Cimitile and Decarlini 1991; Jacobson, Booch et al. 1999).   

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959) (ER) in 1959, 

random graph theory has been applied to the study of complex systems across a wide 
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variety of domains (Albert and Barabasi 2002; Newman 2003; Goodreau, Kitts et al. 

2009; Durrett 2010; Gondal 2011; Simpson, Hayasaka et al. 2011).  Despite this breadth 

of analysis, however, very few studies (e.g., (Potanin, Noble et al. 2005)) have sought to 

use this framework to analyze software systems.  Very recently, researchers have started 

to analyze software systems from the perspective of complex networks (Potanin, Noble et 

al. 2005), but the preliminary studies reported in the literature so far have been limited to 

observations of a restricted set of topological measures and do not provide further 

explanations of the formation and evolution of software structures yet.  These few 

existing studies are limited as they tend to be purely descriptive.   

Our research presented in this chapter explicitly takes into account the particular 

characteristics of software systems and strive to better explain the development and the 

resulting structures of software systems.  Specifically we revisit the function 

dependency networks extracted from the five widely-adopted C-based open source 

software packages as described in Chapter 2.  By leveraging several network topological 

measures from Chapter 2, we reuse those common characteristics that are shared by those 

real world software packages.  Driven by some fundamental incentives in the software 

engineering field and in network growth analysis (Krapivsky, Redner et al. 2000; Jin, 

Girvan et al. 2001; Milo, Shen-Orr et al. 2002; Goh, Oh et al. 2003; Milo, Itzkovitz et al. 

2004), and incorporating the analytical results of Chapter 4, e.g. the impact factors of the 

clustering coefficient, we propose a two-phase network growth model to simulate the 

development process of the software products.  Our analysis shows that our model can 
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successfully explain all the characteristics that are obtained from the real world software 

packages.  To the best of our knowledge, our model is the only one that can explain all 

those characteristics.  We then conclude that our model can be a reasonable explanation 

of the software product formation and development process.   

The rest of the chapter is organized as follows.  We first introduce some 

background information in Section 1.  In Section 2, we perform an empirical analysis of 

five widely-adopted open-source software packages by exhibiting their topological 

measures.  Section 3 shows the fitting of some existing models.  We present our 

two-phase network growth in Section 4 in detail.  Specially we explain the rational 

behind our model, and present our model with textual description and a formal 

mathematical description.  In Section 5, we compute the topological measures of the 

networks that are generated by following our network growth model.  In additional to 

the analytical results, we also perform the numeric study in Section 6 to show some 

measures that are not readily calculated by analytical approach.  Finally, we conclude 

the chapter with a summary of contributions and a discussion of possible future research 

directions in Section 7. 

 

5.2 An empirical study of open source packages  

An empirical analysis is performed to identify the topological properties of real 

software structures.  To perform our empirical study, we have downloaded the source 
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code of five widely-adopted open-source software packages: OpenSSH (a secure 

communication client), Httpd (Apache Web server), Gaim (a multi-protocol instant 

messaging client), MySQL (a database management system), and GIMP (GNU Image 

Manipulation Program).  All of the packages are using C as the programming language.  

These applications vary widely in terms of the size of the package source code, allowing 

us to gain insights into the design of software systems across a range of sizes and 

complexity.   

We define each node to be a function within a source file because functions are the 

smallest self-contained operational component of software systems.  An edge between 

two vertices corresponds to a function call relationship between the functions represented 

by the vertices.  As is common in complex systems analysis (Barabasi and Albert 1999; 

Ravasz and Barabasi 2003), at this stage of our inquiry we consider the edges to be 

weightless and directionless.  Using the above definitions, we extract the function call 

graphs from the software source code, and compute the topological measures of each 

graph.  The graph extraction is accomplished by using Imagix 4D (Murphy, Notkin et al. 

1998), a commercial application intended to help developers model and analyze complex 

software systems.  After constructing the function dependency networks for the real 

world software packages, we aggregate the atomic inter-function relationships to the 

system level topological metrics.  The topological measures are computed by a 

home-grown Java-based application.  The results are presented in Fig. 5.1 and Table 5.1.   
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Fig. 5.1 Degree distributions of five software function dependency networks (Logarithm 

of base two is used throughout this chapter). 

 

Four properties are observed in our empirical study.  1) Figure 5.1 shows the 

degree distributions of the function call graphs have scale-free property.  2) The 

distributions of the five graphs have similar slopes, and thus are parallel.  The intercept 

increases on the Log Frequency axis as the network size increases.  3) The clustering 

using Watts-Strogatz definition remains invariant as the network sizes increases.  4) The 

clustering using Newman definition also remains invariant of the network sizes.  
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Table 5.1 Topological measures of five function dependency networks 

Network N  M  k  
(1)

C  
(2)

C  
Rand

C  

OpenSSH 1,221 5,436 8.90 0.160 0.038 0.00729 

Httpd 2,061 5,005 4.86 0.108 0.028 0.00236 

Gaim 5,181 15,009 5.79 0.084 0.030 0.00112 

MySql 5,024 19,745 7.86 0.158 0.034 0.00156 

GIMP 14,380 45,224 6.29 0.132 0.023 0.00044 

 

5.3 Review of existing models 

We examine whether existing network models can closely reproduce the observed 

topological features of the function dependency networks and thus provide possible 

explanations for the formation and evolution of such networks.  A large number of 

network models exist in the literature.  Having observed inadmissible gaps between the 

Erdős-Rényi random graph model (Erdos and Renyi 1959; Erdos and Renyi 1960; Erdos 

and Renyi 1961) and the observed networks, we now focus on two additional influential 

models we feel most relevant to this study, i.e., the Barabási-Albert (BA) network growth 

model (Barabasi and Albert 1999) and the Ravasz-Barabási (RB) hierarchical network 

model (Ravasz and Barabasi 2003). 

In the BA model, a network starts with a small set of nodes and continuously 

expands with the addition of new nodes, which are attached preferentially to existing 
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nodes that are already well connected.  Specifically, the probability that an existing node 

receives a new edge is proportional to the degree of the node.  The resulting network is 

scale-free and has a power-law degree distribution with a fixed exponent.  However, the 

clustering coefficient decreases as the network grows (Albert and Barabasi 2002).  

Using the Watts-Strogatz definition, it follows approximately a power law (1) 0.75~C N
−  

and tends to zero in the limit of large network size.  This apparently disagrees with the 

observations on the software function dependency networks.  

In the RB model, small groups of nodes organize in a hierarchical manner into 

increasingly larger groups.  During the network growth, sub-networks are replicated.  

A particular node serves as the hub of the network and is connected to all newly 

incorporated sub-networks.  Ravasz and Barabási have demonstrated that this model 

approximately retains the scale-free property (Ravasz and Barabasi 2003).  The RB 

model also leads to invariant clustering coefficient in the Watts-Strogatz definition (Watts 

and Strogatz 1998).  However, the clustering coefficient in the Newman definition 

decreases substantially as network size increases (Newman 2003) (see Fig. 5.2).  Hence, 

this model is also inadequate in explaining software function dependency networks.  In 

the next section, we propose a new model, which extends the RB model and leads to 

invariant clustering coefficient in either of the two definitions. 
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Fig. 5.2 Clustering coefficients of networks generated by the RB model 

 

5.4 Proposed two-phase network growth model 

In our proposed model, network growth experiences two phases.  In the first 

phase, the network expands following the RB hierarchical network model.  When the 

size of the network reaches a particular threshold, the network growth switches to the 

second phase, in which the sub-networks are replicated and linked to each other with 

sparse connections.  Major differences of the second phase from the first one are that the 

inter-sub-network connections are sparse and that there is no particular node serving as a 

hub to all sub-networks.  In contrast to generic network models, such as the BA model 

and the RB model, our proposed model is specifically motivated by software 

development principals.  We first briefly discuss the rationales underlying the model and 

then present the model itself both descriptively and formally. 
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5.4.1 Rationales 

Most scale-free networks that have been studied in the literature (e.g. the 

World-Wide-Web, the Internet, citation networks, and social networks) are gradually 

built up over time.  The size of the growth at each step is relatively trivial compared to 

the size of the existing network.  Connections between new growth and the existing 

network are not necessarily sparse.  The network growth mechanism does not change as 

the network grows.  Most existing network models that generate scale-free networks 

assume a similar growth process.  

We posit that the development of software systems, however, follows a different 

process, while the resulting function dependency networks also possess the scale-free 

property.  Regarded as a unique practice of complex system generations, software 

development has its own philosophy.  Some generally-advocated software development 

principals include divide-and-conquer, modularization, high intra-module cohesion, and 

low inter-module coupling.  A large software system is usually divided into several 

self-contained sub-systems of manageable sizes.  The sub-systems, often referred to as 

modules (Parnas 1972; Parnas 1972), can be developed by one or a few highly-interactive 

engineering teams.  Due to the high level of interaction within the teams, the structures 

of the modules are highly cohesive, with dense intra-module connections among 

functional units.  On the other hand, to achieve encapsulation and independence of 

modules, it is desired to keep the inter-module connections sparse so that any change 
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made on a certain module will have minimal impact on others (Dhama 1995; Tonella 

2001; Leino and Nelson 2002; Darcy, Kemerer et al. 2005).  As software engineers 

apply these principals in practice, the structures of the software systems they develop will 

have some special characteristics, which can be reflected by topological measures of the 

corresponding function dependency networks. 

We can also look at software packages from a structure angle.  Viewed from the 

point of high structural levels, software packages are amalgamations of several 

semi-independent modules, which share similar topological characteristics due to 

common development practices.  The connections among modules occur intermittently 

and are sparse for the purpose of improving manageability, modularity, and extensibility 

by maintaining low coupling between functionally distinct modules (Dhama 1995; 

Tonella 2001; Darcy, Kemerer et al. 2005).  There should not be a single function or 

module that serves as a hub of the entire package in order to avoid system crashes caused 

by single-point failures (Kennel, Perry et al. 1989; Albert, Jeong et al. 2000; Callaway, 

Newman et al. 2000; Li, Zou et al. 2004; Hu, Guo et al. 2005).  On the other hand, at a 

much detailed structural level, the functions within a module are well connected to 

improve intra-module cohesion.  There are very likely one or a few largely connected 

functions serving as local hubs of the module to pass on data and commands.  Therefore, 

we propose that there are two different mechanisms that govern the growth of a software 

function dependency network at different levels depending on the size of the network.   
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5.4.2 Model description 

We first define two parameters: n , the size of the initial network, and T , the 

number of steps that the network grows before the growth mechanism migrates from 

phase one to phase two.  It is plausible to assume that 3n ≥  and 1T ≥  for a large 

software system.  

Phase one 

The first phase of our model follows the same rules defined in the RB hierarchical 

network model (Ravasz and Barabasi 2003).  At the starting point, referred to as step 

one, the network is a small cluster with n  nodes where each node is connected to every 

other node.  Of the n  nodes, one is defined as the “hub” and the others are called 

“peripherals”.  The “hub” of the initial cluster is also referred to as the “center” of the 

network.  Throughout phase one, there is only one center. 

At step two, 1n −  replicas of this small cluster are generated, resulting in an 

2
n -node cluster.  The nodes that originate from the hub become the new hubs.  The 

copies of peripherals become the new peripherals.  To connect the original cluster and 

its replicas, the new peripherals are connected to the center.  

Subsequently, the 2
n -node cluster is again replicated 1n −  times, generating an 

3
n -node cluster.  The copies of the hubs and peripherals in the previous step become the 

new hubs and peripherals, respectively.  The new peripherals are then connected to the 

center.  
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Following the same procedure, the network generation will be repeated for T  

steps.  The cluster obtained at step T  is referred to as a “module”. 

Phase two 

Starting from step 1T + , the network generation migrates to phase two.  The 

module generated at the end of phase one is replicated.  We refer to the original module 

as module 1 and the replica as module 2.  All nodes that originate from hubs and 

peripherals are again called hubs and peripherals, respectively.  In addition, the copy of 

the center of module 1 is called the center of module 2.  Unlike in phase one, the 

number of centers increases by one at each step in phase two.  Two least-connected 

hubs—one from each module—are connected through an edge.  Specifically, the last 

hub in module 1 is connected to the second last hub in module 2.  This newly added 

edge is referred to as an “inter-module edge”.  The hubs connecting the modules 

resemble interfacing “studs” in software modules designed for the purpose of 

inter-module communications.  It is usually desired to keep the linkage between the 

studs and other parts of a module to a minimum.  Such studs are usually developed after 

the functionalities of the module have been developed.  The combination of the two 

modules and the inter-module edge forms the network of step 1T + .  

At the next step, another replica of the original module, referred to as module 3, is 

added to the network.  Two least-connected hubs—one from module 3 and the other 

from module 2—are connected through an inter-module edge.  Specifically, the last hub 
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in module 2 is connected to the second last hub in module 3.  This procedure can be 

repeated indefinitely.  

 

   

S tep   1   

S tep 2   

S tep 4   

S tep 5   

S tep 3   

Peripheral 

Hub 

Center 

Phase One 

Phase Two 

Inter-Modular Edge 

Module 

Hub 

 

Fig. 5.3 Two-phase network growth model. Note that the initial network is fully 

connected, although the edges connecting diagonal nodes are not evident. 
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Fig. 5.3 illustrates the complete procedure using an example where 5n =  and 

3T = .  The first three steps follow the first-phase generation rules.  Steps 4 and 5 

represent the second-phase network generation.  

5.4.3 Formal model description 

We reuse the symbols listed in Table 2.2, and add a subscript representing the step 

of network growth.  For example, 
t

N  denotes the number of nodes at step t .  Table 

5.2 lists some additional necessary symbols.   

 

Table 5.2 Additional symbols used in the proposed model 

Symbol Measure 

t  Current step of network growth 

t
V  Set of nodes at step t  

t
VH  Set of hubs at step t  

t
VP  Set of peripherals at step t  

t
VC  Set of centers at step t  

),( ji  Edge connecting nodes i  and j  

t
E  Set of edges at step t  

t
EI  Set of inter-module edges at step t  
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Table 5.3 Various aspects of the proposed two-phase network growth model 

 1=t  Tt ≤≤2  

t
V  {1,2,..., }n  1

1 1{ | ; 1,2,..., 1}t

t t
V i c n i V c n

−

− −
+ ⋅ ∈ = −U  = {1,2,..., }tn   

t
VH  {1}  1

1{ | ; 1,2,..., 1}t

t
i c n i VH c n

−

−
+ ⋅ ∈ = −   

t
VP  {2,3,..., }n  1

1{ | ; 1,2,..., 1}t

t
i c n i VP c n

−

−
+ ⋅ ∈ = −   

t
VC  {1}  {1}  

t
E  {( , ) |i j , 1,2,..., ;i j n= }i j≠  

1

1 1

1{( , ) | ( , ) ; 1,2,..., 1}t

t t

tE i c n j c n i j E c n−

− −

−
+ ⋅ + ⋅ ∈ = −U  

{(1, ) | }
t

i i VP∈U  

t
EI  ∅  ∅  

 

 Tt >  

t
V  

1 {( ) | }T

t T
V t T n i i V

−
− + ∈U  = {1,2,..., ( 1) }Tt T n− +  

t
VH  

1 {( ) | }T

t T
VH t T n i i VH

−
− + ∈U  

t
VP  

1 {( ) | }T

t T
VP t T n i i VP

−
− + ∈U  

t
VC  

1 {( ) 1}T

t
VC t T n

−
− +U  = {1 | 0,1,..., }Tc n c t T+ ⋅ = −  

t
E  

1 1{(( ) , ( ) ) | ( , ) } ( \ )T T

t T t t
E t T n i t T n j i j E EI EI

− −
− + − + ∈U U  

t
EI  

1 {(( ) 1, ( 1) 2 1)}T T

t
EI t T n n t T n n

−
− − + − + − +U  = 

{( 1, ( 1) 2 1) | 1,2,... }T Tc n n c n n c t T⋅ − + + − + = −  
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Various aspects of our two-phase network growth model are formally defined in 

Table 5.3.  When 1 t T≤ ≤ , the network growth is in phase one.  When t T> , the 

network growth is in phase two.  

Table 5.4 lists some basic measures.  Most measures can be straightforwardly 

derived, except | |
t t

M E= , as 
t

E  is only recursively specified. 
t

M  can be derived 

from the following recursively defined sequence. 

2

1

( 1)

2
n

n n
M C

−
= =  (5.1) 

1 1| | ( 1)t

t t t t
M n M VP n M n

− −
= ⋅ + = ⋅ + − , when Tt ≤≤2 . (5.2) 

1 1
t t T

M M M
−

= + + = ( 1)
T

t T M t T− + + − , when Tt > . (5.3) 

 

Table 5.4 Basic measures of the proposed two-phase network growth model 

 1 t T≤ ≤  Tt >  

t
N =| |

t
V  t

n   ( 1) Tt T n− +  

| |
t

VH  1( 1)tn −
−  1( 1)( 1)Tt T n −

− + −  

| |
t

VP  ( 1)tn −  ( 1)( 1)Tt T n− + −  

| |
t

VC  1  1t T− +  

t
M =| |

t
E  1 11

(3 2)( 1) ( 1)
2

t t
n n n n

− +
− − − −  1 11

( 1)( (3 2)( 1) ( 1) )
2

T T
t T n n n n t T

− +
− + − − − − + −  

| |
t

EI  0 t T−  
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5.5 Properties of the proposed model 

In this section, we derive and discuss some properties of networks generated 

following the proposed two-phase growth model.  The analysis will show that the 

proposed model reproduces the features observed in the empirical analysis of real-world 

software packages. 

5.5.1 Average degree 

Property 1: In the limit of large network size (as t T> → ∞ ), average degree tk  

tends to a constant, which is independent of the network size.  

Proof:  

When t T> , 
t

M = 1 11
( 1)( (3 2)( 1) ( 1) )

2

T T
t T n n n n t T

− +
− + − − − − + − , 

t
N = ( 1) Tt T n− + . 

tk =
2

t

t

M

N
= 

1(3 2)( 1) 2 2( 1) 2

( 1)

T

T T

n n n

n n t T n

+
− − − −

+ −
− +

. (5.4) 

The time-dependent term 
2

( 1) T
t T n− +

 is negligible in a reasonably-sized 

software package.  For example, when n =5, T =5, and t =10, 
2

( 1) T
t T n− +

 is about 

0.0001 and has little effect on tk .  As t → ∞ , tk →

1(3 2)( 1) 2 2( 1)T

T

n n n

n n

+
− − − −

+ , 
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which is constant and is only dependent on the initial cluster size n  and the phase 

migration threshold T . ■ 

5.5.2 Clustering coefficient 

First, we show that in the RB hierarchical network model (corresponding to the 

situation where T = ∞ , such that the network growth remains in the first phase, in the 

proposed model), the clustering coefficient in the Newman definition tends to zero in the 

limit of large network size.  This has also been demonstrated in Fig. 4 and is 

inconsistent with what we observe in the function dependency networks of real-world 

software packages. 

Property 2: If T = ∞  and t T≤  always holds, as t → ∞ , the clustering 

coefficient in the Newman definition (2) 0
t

C → . 

Proof:  

If T = ∞  and t T≤  always holds, the network growth remains in the first phase.  

Recall that (2) 3  
t

t

t

p
C

q

×
= , where 

t
p  is the number of triangles and 

t
q  is the 

number of connected triples.  At t =1, as the initial network is fully connected, every 

triple is also a triangle, each triangle contributes three connected triples centered on 

different nodes, 1q =3× 1p , and thus 
(2)

1C =1.  

When 2 t T≤ ≤ , the triangles in the network 
t

G  come from two sources: the 

replicas of 1t
G

−
, and the new triangles formed by the inter-cluster edges connecting the 
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center and the peripherals.  Note that a new triangle can only be formed when two 

inter-cluster edges are connecting the center and two peripherals from the same replica of 

the original cluster 1G . Therefore, 

1 2 1

1 1 1

( 1)( 2)
( 1) ( 1)

2

t t

t t n t

n n
p np n C np n

− −

− − −

− −
= + − = + −  (5.5) 

The connected triples in 
t

G  come from four sources: the replicas of 1t
G

−
, the new 

triples formed by two inter-cluster edges; the new triples formed by one inter-cluster edge 

and one intra-cluster edge that belongs to a replica of 1t
G

−
; the new triples formed by one 

inter-cluster edge and one intra-cluster edge that belongs to 1t
G

−
. Therefore, 

t
q = 1

( 1) 1 ( 1) ( 1)
( 1) ( 1) ( 3) ( 1)

2 2

t t
t t t

t

n n n
nq n n n t n

n
−

− − − − −
+ − + − + − + −

−
 (5.6) 

Apparently, 
t

q  (on the order of 
2t

n ) increases much faster than 
t

p  (on the order of 

1t
n

+
). (2)

t
C  monotonically decreases as t  increases. (2) 0

t
C → , as t → ∞ . ■ 

We now show that when the proposed two-phase network growth model is indeed 

in effect (i.e., T  is finite), the clustering coefficient in the Newman definition tends to a 

non-zero constant in the limit of large network size. 

Property 3: If T  is finite, as t T> → ∞ , (2)

t
C  tends to a non-zero constant.  

Proof:  

When Tt > , the new triangles of 
t

G  come only from the addition of a new 

replica of 
T

G  to 1t
G

−
.  The single inter-module edge that links the new replica of 

T
G  

and 1t
G

−
 does not introduce any new triangle. Therefore, 

1 ( 1)
t t T T

p p p t T p
−

= + = − +  (5.7) 
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The inter-module edge does introduce new connected triples.  The number of such 

connected triples is twice the degree of the hubs connected by the inter-module edge.  

t
q = 1 2( 1) ( 1) 2( )( 1)

t T T
q q n t T q t T n

−
+ + − = − + + − −  (5.8) 

In phase two, we choose to connect hubs instead of peripherals when a new module 

is added to the network.  The reason is that the degree of hubs does not change in phase 

one. In fact, it remains 1n −  throughout the first phase.  On the other hand, the degrees 

of peripherals change as the network grows in phase one, as they are used to connect new 

replicas with the center.  

(2) 3  
t

t

t

p
C

q

×
= =

3( 1)

( 1) 2( )( 1)

T

T

t T p

t T q t T n

− +

− + + − −
=

3

2( 1)
2( 1)

1

T

T

p

n
q n

t T

−
+ − −

− +

 (5.9) 

(2)

t
C monotonically decreases as t  increases.  However, the time-dependent term 

2( 1)

1

n

t T

−

− +
 becomes negligible as t  is sufficiently large. (2)

t
C →

3

2( 1)

T

T

p

q n+ −
, as 

t T> → ∞ . ■ 

Finally, while it has been shown that the RB hierarchical network model leads to 

invariant clustering coefficient in the Watts-Strogatz definition, (1)

t
C (Watts and Strogatz 

1998), we now show that in the proposed two-phase model, (1)

t
C  tends to a non-zero 

constant in the limit of large network size. 

Property 4: As t T> → ∞ , (1)

t
C  tends to a non-zero constant.  

Proof:  
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Recall that (1)

t
C  is defined as the mean of the clustering coefficients of all nodes 

and (1)

,i tC = ,

, ,( 1) / 2

i t

i t i t

a

k k −
, where ,i ta  is the number of edges among the neighbors of 

node i .  When t T> , at each step, only the two hubs (denoted j  and l ) connected 

by the new inter-module edge experience any degree or edge connection change. 

Previously (at step 1t − ), all the neighbors of these hubs are connected to each other and 

(1)

, 1j tC
−

= (1)

, 1l tC
−

=1. Now (at step t ), the degree of these hubs increases by 1 due to the added 

inter-module edge.  

(1)

,j tC = (1)

,l tC =
( 1)( 2) / 2

( 1) / 2

n n

n n

− −

−
=

2n

n

−
 (5.10) 

(1)

t
C = (1) (1) (1) (1) (1) (1)

1 1 , , 1 , , 1

1
( ( ) ( ))

t t T T j t j t l t l t

t

N C N C C C C C
N

− − − −
+ + − + −  

=
(1) (1)

1

1

( ) 4

( 1) ( 1)

t T

T

t T C C

t T t T n

−

+

− +
−

− + − +
 

= (1)

1

4( )

( 1)
T T

t T
C

t T n
+

−
−

− +
= (1)

1

4

(1 )
T

T

C
T

n
t T

+

−

+
−

 (5.11) 

As t → ∞ , (1)

t
C →

(1)

1

4
T T

C
n

+
− . ■ 

5.5.3 Degree distribution 

Property 5: A network generated by the two-phase model is approximately 

scale-free. Its degree distribution approximately follows the power law. 

We discuss this property informally here and will demonstrate it through a numeric 

study in the next section. Ravasz and Barabási have demonstrated that the RB 
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hierarchical network model approximately retains the scale-free property (Ravasz and 

Barabasi 2003).  The degree distribution of a RB hierarchical network approximately 

follows the power law. In the second phase of the proposed two-phase model, the 

network generated using the RB model for T  steps are replicated.  Such replication 

does not change the degree distribution.  The only change is caused by the inter-module 

edges. At step Tt > , the proportion of n -degree nodes ( )
t

p n  increases by 

2 | |
t

t

EI

M
=

1 1

1

1 1
(1 )( (3 2)( 1) ( 1) ) 1

2

T T
n n n n

t T

− +
+ − − − − +

−

 and the proportion of 

( 1n − )-degree nodes ( 1)
t

p n −  decreases by the same amount.  This amount of change 

is negligible in a reasonably-sized network.  The degree distribution at any other degree 

is identical to that of the RB hierarchical network at step T .  The network is still 

approximately scale-free. 

5.6 Numeric study 

In this section, we numerically illustrate some properties of the proposed model. 

We also study some possible variations of the model.  In the original model, one 

inter-module edge connects the hubs of two modules.  We now investigate the impacts 

of the number and location of the inter-module edges between two modules.  As the 

uniqueness of the model is in the second phase, we focus the study on the second phase 

only. 
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5.6.1 Clustering coefficient 
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Fig. 5.4 Clustering coefficients of two-phase network growth model 
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(a), (b): Original model; (c),(d): Varying the number of inter-module edges (T =4); 

(e),(f): Varying the locations of inter-module edges (T =4). 

 

Fig. 5.4 shows the clustering coefficients in the Newman and Watts-Strogatz 

definitions under various settings.  We set the size of the initial cluster to n =5 

throughout this section.  The value of n  affects the absolute values, but not the trends, 

of clustering coefficient and other topological properties examined later. 

Figures (a) and (b) show the clustering coefficients of the original model under 

different values of T , which determines the size of a module generated in phase one.  

The clustering coefficients by both definitions quickly approach certain lower bounds as 

the network grows.  The larger the modules are, the lower the overall clustering is.  

Figures (c) and (d) show the effects of the number of inter-module edges between 

two modules on clustering.  The inter-module edges connect hubs of the modules.  For 

n =5, T =4, each module has 64 hubs.  As the number of inter-module edges increases, 

the lower bounds of the clustering coefficients decrease and it takes longer to approach 

the lower bounds.  This corresponds to the intuition that lowering inter-module coupling 

helps to improve the overall clustering.  

Figures (e) and (f) show the effects of the locations of inter-module edges on 

clustering.  Three conditions are investigated: the inter-module edge between two 

modules connects (1) hubs, (2) centers, and (3) randomly selected nodes.  The first two 

conditions set the upper and lower bounds of clustering, as the center of a module has the 
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highest degree and the hubs have the lowest degree.  Placing the inter-module edge 

randomly leads to clustering lying between the bounds.  The locations of inter-module 

edges have different effects on the clustering coefficients in different definitions.  

Connecting hubs gives the upper bound of (1)
C  and the lower bound of (2)

C .  

5.6.2 Average degree 

7.10

7.15

7.20

7.25

7.30

7.35

0 5000 10000 15000 20000

N

A
v

er
a

g
e 

D
eg

re
e 

  
  

1 Edge

3 Edges

16 Edges

32 Edges

48 Edges

64 Edges

 

Fig. 5.5 Average degree (T=4) of two-phase network growth model. 

 

Fig. 5.5 shows the average degrees of the original model and its variants with 

different numbers of inter-module edges.  In the original model, average degree quickly 

approaches an upper bound.  As the number of inter-module edges increases, the upper 
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bound also increases and it takes longer to approach the upper bound.  The locations of 

inter-module edges have no effect on average degree. 

 

5.6.3 Degree distribution 
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Fig. 5.6 Degree distribution (T=4) of two-phase network growth model. 
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(a): Original model; (b): 64 inter-module edges connecting hubs; (c): one inter-module 

edge connecting centers; (d): 64 inter-module edges connecting randomly-selected nodes 

( t =T +24) 

Fig. 5.6 shows the degree distributions of the original model and some variants.  

In the original model (see Fig. 5.6(a)), the degree distribution remains almost the same as 

the network grows.  The only changes at degrees n  and 1n −  are negligible.  The 

model basically retains the degree distribution of the RB hierarchical network model 

(Note that when t T≤ , the model is identical to the RB hierarchical network model 

(Ravasz and Barabasi 2003)).  The degree distribution approximately follows the power 

law (Ravasz and Barabasi 2003).  

As the number of inter-module edges increases (see Fig. 5.6(b)), the deviation from 

the RB hierarchical network model increases.  The changes occur mainly at low degrees.  

The degree distribution still appears to approximately follow the power law. 

If the inter-module edge between two modules connects the centers, rather than 

hubs, of the modules (see Fig. 5.6(c)), the degree distribution deviates from that of the 

RB model at high degrees.  The deviation increases as the network grows. The degree 

distribution gradually departs from the power law. 

If there are many inter-module edges connecting randomly selected nodes (see Fig. 

5.6(d)), the degree distribution may severely deviate from the power law over time, thus 

destroying the scale-free property. Deviation may occur at any degree.  

From Fig. 5.6(c) and (d), we observe that the connecting vertices of the 

inter-module edges play an important role in maintaining the power law property.  On 
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the other hand, Fig. 5.6(b) shows that the number of inter-module edges connecting two 

modules is a less significant factor.  The connecting vertices of inter-module edges 

correspond to the interface functions of the modules in software packages.  Our finding 

is consistent with the common knowledge established in the software engineering field 

that interface functions are very important in maintaining the software structure as the 

software size expands.  If the interface functions are chosen wisely, a software package 

can maintain a steady structure even though interface functions are heavily called across 

modules. 

The effects of the number and location of inter-module edges can be summarized as 

follows.  The number of inter-module edges has little effect on degree distribution.  

However, as this number increases, clustering decreases while average degree increases.  

The location of inter-module edges has no effect on average degree but affects clustering 

and degree distribution. Its effect on clustering is different depending on the definition of 

clustering coefficient.  Connecting hubs (centers) of modules provides the upper (lower) 

bound of (1)
C  and the lower (upper) bound of (2)

C .  If the inter-module edges connect 

centers, degree distribution gradually departs from the power law as the network grows.  

Connecting randomly-selected nodes across modules may destroy the scale-free property. 

5.7  Concluding remarks 

In this chapter, we propose a new network growth model.  Our development of the 

model is inspired by generally-advocated software engineering principals, such as 
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divide-and-conquer, modularization, high intra-module cohesion, and low inter-module 

coupling.  The model has two phases.  The first phase follows the hierarchical network 

model of Ravasz and Barabási (Ravasz and Barabasi 2003).  The second phase strives to 

minimize the coupling across modules generated following the hierarchical network 

model.  Both analytical and numerical studies show that the proposed model adequately 

reproduces the topological features observed in real-world software packages.  

The results of this work can be used in developing metrics and associated 

guidelines—complementing existing ones—in CASE tools.  Such metrics provide 

further insights into the overall structure of a software package and the process governing 

its development.  They can be used by software developers and managers to adjust 

processes and strategies during software development.  They can also be used to 

evaluate and compare developed packages, especially open-source products, in terms of 

such properties as modularity, intra-module cohesion, and inter-module coupling. 

Similar to some related studies (e.g., (Zheng, Zeng et al. 2008)), we focus on the 

physical topological properties of a particular type of networks (i.e., software function 

dependency networks).  However, while our model has been developed explicitly to 

characterize and explain software function dependency networks, it may be applied to 

study pervasive physical topological properties possessed by other networks that exhibit 

similar features.  It may be especially useful for studying networks that exhibit such 

features as modularization, high cohesion, and low coupling.  For example, a movie 

actor is usually associated with a certain company or agent.  Naturally, actor 
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collaboration networks should exhibit heavy intra-company collaborations and relatively 

sparse inter-company collaborations.  Our two-phase network growth model can 

potentially be used to analyze such actor collaboration networks.  

Our study opens up several avenues for further research.  First, investigating 

networks built from historical versions of the same software package may generate useful 

insights.  Analyze the evolvement of the software unit dependency networks and how 

software grows and changes over time is likely to provide direct evidence to support our 

network growth model.  

Second, while we have modeled software packages as un-directed, un-weighted 

networks of functions, considering the direction and weight of function calls may reveal 

additional useful information about software packages.  

Third, while we have focused on seeking a general understanding of software 

development in this chapter, our model can be extended in the future to accommodate 

more specifics (e.g., complexity differences across functions and size differences across 

modules) with parameters (e.g., T ) tuned to fit a particular software package of interest.  

Further research and improved understanding of random networks may lead to the 

development of useful metrics that provide guidance to software developers and 

architects in the development of complex software systems. 
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CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 

Open source software has gained increasing popularity for the past few years.  

Lots of businesses choose to adopt open source software due to its cost efficiency and 

customizable functionalities.  However, as open source software packages become 

increasingly complicated, it is very difficult to analyze the structures of the software 

products, and predict the quality of the software at the early stage of the development 

process.  In this dissertation, we confront the challenges that exist in open source 

software engineering.  Specifically we examine the collaborative relations among open 

source software developers, study software development processes, and analyze the 

structures of open source software packages’ source code.  Our intentions are to 

discover some common properties that are shared by different open source software 

applications, and hopefully to reveal the underlying characteristics that guide the open 

source software development.  Our research follows the 4-P framework which defines 

the four key elements in software engineering: Project, People, Process, and Product.  

In terms of research methodology, we leverage the topological metrics that have been 

established in complex network theory, and propose a random network growth model to 

illustrate open source software development processes.  

In Chapter 2, we analyze real world software packages with function dependency 

networks.  Our study subject is the source code of open source software packages, the 

product of software engineering.  We obtain the source code of five C language based 
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open source software packages that have different package sizes, and are from different 

application domains.  All those packages are considered successful in their own 

application domain.  We then construct an undirected and un-weighted network for each 

one of the software packages with the vertex representing a function and the edge as a 

function call.  Once the function dependency networks are constructed, we leverage 

several widely adopted topological measures to analyze those networks.  Our empirical 

study indicates three common features that those five function dependency networks 

possess: (1) average degree is independent of network size, (2) clustering coefficient, in 

either of two definitions proposed by Watts and Strogatz, and by Newman, is independent 

of network size, and (3) the networks are scale-free.  These findings support our 

hypothesis that there exist some common topological properties shared by different open 

source software packages over a wide range of purpose, domain, size, and complexity.   

The results of Chapter 2 can be used as a starting point to quantitatively analyze 

software architectural structures.  Although we used open source software packages to 

perform the case study, the usage of our research is not confined to the scope of open 

source software applications.  Software companies can easily adopt our method to 

examine the architectural structure of their proprietary software products since they have 

the full control of their own software source code.  Moreover a similar framework can 

be easily created to analyze software systems that are developed in programming 

languages other than C language.  For example, we can construct a software unit 

dependency network for a Java-based system by defining vertex as a Java object and edge 
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as a Java object reference.  Once the dependency network has been constructed, the 

similar set of topological measures can be calculated to examine that software package.   

Chapter 3 focuses on another important factor in software engineering field, People, 

more specifically software developers.  The collaboration among software developers is 

an important factor in open source software development as the efficiency of the 

developer collaboration has a direct impact on the quality of the final software product.  

In this chapter, we intend to discover some common patterns from different real world 

software developers’ collaborations.  Specifically we choose the bug fixing data sets of 

two real world software applications, MediaWiki and Gentoo, to perform the empirical 

analysis.  We define the fact that two developers have worked to solve at least one bug 

together as the collaboration between those two developers.  Based on that definition, 

we extract bug-developer bipartite networks from those two bug fixing data sets, and 

derive developer-developer collaboration networks from the bipartite networks.  

Following the similar procedure described in Chapter 2, we calculate several topological 

measures for those constructed bug-developer bipartite networks and 

developer-developer collaboration networks.  The empirical findings show that all 

networks including the bipartite networks possess the scale-free property.  Our empirical 

findings and research framework can be extended to further examine open source 

software developer collaborations such as development leadership, task assignments and 

scheduling, the impact of key developer’s sudden departure, etc.   
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In both Chapter 2 and Chapter 3, the networks that we extract out of real world 

entities are undirected and un-weighted.  In the future research, we may extend our 

empirical study by considering meaningful directions and weights on the constructed 

networks.  By considering the direction and weight of edges, we will incorporate more 

usable information of the real world entities, and thus may reveal additional useful 

findings about software products and developer collaborations.   

In complex network theory, clustering coefficient is one of the most informative 

topological measures.  Chapter 4 aims to provide an analytical comparison between two 

widely adopted clustering coefficient definitions, 
WS

C and 
NW

C , proposed by 

Watts-Strogatz and Newman, respectively.  Mathematical derivations are presented to 

compare the similarities and differences between those two definitions.  Our findings 

show the two definitions both depend on ( )i

a
T  and ( )i

pT , the number of triangles and 

triples, respectively, around vertex i .  The difference between the two definitions lies 

in that 
WS

C  is the mean of the ratio ( )i

a
T  and ( )i

pT , and 
NW

C  is the ratio of the two 

means of ( )i

a
T  and ( )i

pT .  We also examine the lower bounds and upper bounds of those 

two definitions, and the conditions to meet those extreme bounds.  Our further analysis 

shows the impact factors of 
WS

C and 
NW

C  values.  Using simulated scale-free 

networks, we demonstrate that the extremely popular vertices have little impact on 
WS

C  

due to the limited number of those popular vertices.  Whereas those popular vertices are 

the dominating factors in determining the value of 
NW

C .   
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Our research results show some useful analytical properties of the two clustering 

coefficient definitions, 
WS

C and 
NW

C .  The results provide complex network 

researchers more insights when they conduct network analysis research.  For example, 

our findings provide the guidelines on which clustering coefficient definition should be 

adopted when a complex network needs to be analyzed.  Moreover the analytical 

properties of the two clustering coefficient definitions can be useful when a random 

network growth model is proposed to explain the formation of a complex network.  

Chapter 5 incorporates all the empirical and analytical findings that have been 

presented in the previous chapters.  In this chapter, we intend to discover the underlying 

characteristics of open source software development processes, and provide a reasonable 

explanation of the formation of open source software packages.  Together with Chapter 

2 and Chapter 3, we have studied three of the four P’s, Product, People, and Process, in 

the Four P Software Engineering Framework.   

Chapter 5 reuses the empirical findings from Chapter 2, the topological features of 

the function dependency networks that have been extracted from five real world C-based 

open source software packages.  In addition to the descriptive findings, in Chapter 5 we 

propose a two-phase network growth model that simulates the development process of 

open source software products.  Our network growth model is inspired by some widely 

adopted principles in software engineering, e.g. modularization, high intra-module 

cohesion, low inter-module coupling, etc.  The model also leverages the analytical 
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results in Chapter 4 by considering the similarities and differences between 
WS

C  and 

NW
C .  Our network growth model describes two different growth phases as the size of 

the software grows.  The first phase follows the hierarchical network model proposed by 

Ravasz and Barabási (Ravasz and Barabasi 2003).  In the second phase software 

modules are connected with sparse inter-module connections.  The second phase 

observes the low inter-module coupling principle.  Both analytical and numerical results 

demonstrate that the proposed two-phase network growth model adequately reproduces 

the topological properties that have been found in Chapter 2.   

The results of Chapter 5 can be leveraged by software developers and managers to 

adjust processes and strategies during software development in order to reduce the 

software development costs and risks.   

This dissertation opens up several avenues for further research.   

First, while we have studied several distinct open source software packages, 

investigating networks built from historical versions of the same software package is 

likely to provide direct evidence to support our network growth model.  By comparing 

the networks extracted from different versions of the same software, we will be able to 

realize how software structures evolve over time.  Moreover, if we consider the 

popularity, such as the download rate and user rating, of each software version, we are 

likely to discover more insights on how network structure and popularity correlate.   

Second, most networks that we have extracted from the real world entities are 

un-directed and un-weighted.  Considering the direction and weight of those networks 
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may reveal additional useful information about open source software.  For the C-based 

software packages, the edge direction can indicate the direction of the function call 

between the two connected C functions.  Similarly, the weight on an edge may represent 

the number of function calls between those two functions.  Note that by considering the 

direction of the network edge, we have to take into consideration of possible network 

loops and self loops.  Thus the constructed networks will likely have more complicated 

topological structures.   

Third, all of the five real world software packages that we chose for the case studies 

are considered “popular” or “good quality” software systems.  On the other hand, 

comparing software packages with different popularities, e.g. download rates, and 

qualities, e.g. user ratings, in the same application domain would be worthwhile.  The 

comparison is likely to reveal the correlation between software structure and software 

quality.  The challenge in this line of research extension lies in two folds.  Firstly, the 

quantitative definition of the so-called software quality is still under intense debate in 

software engineering field.  Secondly, the popularity depends on a much broader range 

of factors than the structure of the software package.  Other related impact factors 

include the timing of the software release, user accessibility, key developers’ name 

recognition, etc.   

Fourth, while all five software packages in this dissertation are written in C which 

is a procedural language, it would be interesting to examine software packages written in 

Object-Oriented languages, such as C++, C#, and Java.  Lots of modern open source 
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software projects are developed in Java, e.g. Hadoop, Solr, Lucene, etc.  The high 

popularity of Java based open source software projects provides more open source 

subjects to analyze.  Unlike C, Java based software packages have more hierarchical 

structures.  For example, a network vertex can represent a package, a Java file, a class, 

or a method.  How to choose the appropriate level of abstraction is the key challenge 

when a network is to be constructed out of the software source code.   

The results of this dissertation can be used as a starting point to quantitatively 

analyze open source software architectural structures, and the development process of the 

software packages.  More metrics and associated guidelines can be developed to help 

software developers adjust software development strategies in order to minimize the risks 

and costs of software development.   

While our research focuses on a particular type of networks, i.e., open source 

software networks, our research methods, measures and the proposed network growth 

model may be applied to study other networks that exhibit similar features.  For 

example, movie actor collaboration networks also possess such features as 

modularization, high cohesion, and low coupling, our research methods and the 

two-phase network growth model can potentially be used to analyze the actor 

collaboration networks.   
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