
www.manaraa.com

PEOPLE, PROCESSES, AND PRODUCTS: CASE STUDIES IN

OPEN-SOURCE SOFTWARE USING COMPLEX NETWORKS

by

Jian James Ma

A Dissertation Submitted to the Faculty of the

Committee On Business Administration

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

WITH A MAJOR IN MANAGEMENT

In the Graduate College

THE UNIVERSITY OF ARIZONA

2011

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3490917

Copyright 2012 by ProQuest LLC.

UMI Number: 3490917

www.manaraa.com

2

THE UNIVERSITY OF ARIZONA

GRADUDATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation

prepared by Jian James Ma entitled People, Processes, and Products: Case Studies in

Open-Source Software Using Complex Networks and recommend that it be accepted as

fulfilling the dissertation requirement for the Degree of Doctor of Philosophy

___ Date: 11/30/2011

Daniel Zeng

___ Date: 11/30/2011

David E. Pingry

___ Date: 11/30/2011

Zhu Zhang

Final approval and acceptance of this dissertation is contingent upon the candidate’s

submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it be accepted as fulfilling the dissertation requirement.

___ Date: 11/30/2011

Dissertation Director: Daniel Zeng

www.manaraa.com

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at

the University of Arizona and is deposited in the University Library to be made available to borrowers

under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that

accurate acknowledgement of source is made. Requests for permission for extended quotation from or

reproduction of this manuscript in whole or in part may be granted by the author.

SIGNED: Jian James Ma

www.manaraa.com

4

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor, Professor Daniel Zeng. He is the mentor of

me in both academic work and personal life. Together we have experienced struggles and

cheers. His countless and endless support helped me overcome a great number of critical

moments. This dissertation would not have been possible without the guide and trust of

my advisor. It has been a great honor to study in his research group. His profound

intelligence and continuous dedication will be remembered forever.

I am grateful for Professor David E. Pingry’s participations in my dissertation committee.

He has made a number of useful comments on and suggestions to this research. I would

also like to thank Professor Zhu Zhang for his help to not only my dissertation but also

the project that we have worked together. His kindness and openness leave me a great

memory in my research career.

My gratitude also extends to Professor Wei H. Lin, my minor advisor in the SIE

department, who taught me Simulation Modeling and Analysis. I would like to show my

gratitude to other MIS faculty and staff members at the University of Arizona for their

support during my studies. Cinda Van Winkle and Mona Lopez have provided me

tremendous help to a number of administrative matters.

I also own everyone in our research group a big debt: Aaron Runpu Sun and Ping Yan for

that they are always there to offer helps and assistance.

Lastly, I owe my deepest gratitude to my wife, Xiaofei Annie Wen. It was she who helped

me go through the most difficult period of my life. It was she who always believed me

even when I had doubt about myself. It is she who has completed my life in every aspect.

I owe everything including my life to her.

I would also like to dedicate my dissertation to my daughter Helen Tee-Tee Ma, my father

Xiurang Ma, and to my always beloved mother Lianzhen Kong, may her sole rest in

peace forever.

www.manaraa.com

5

DEDICATION

To

My dearest lifelong influences:

Mother, Father,

Annie,

And Tee-Tee

www.manaraa.com

6

TABLE OF CONTENTS

LIST OF TABLES .. 9

LIST OF FIGURES .. 10

ABSTRACT .. 11

CHAPTER 1 INTRODUCTION .. 14

CHAPTER 2 ANALYZING COMPLEX SOFTWARE PRODUCTS WITH FUNCTION

DEPENDENCY NETWORKS .. 21

2.1 Introduction .. 21

2.2 Research backgrounds ... 23

2.3 Empirical analysis of real-world software packages 25

2.4 Network construction ... 27

2.5 Network topological measures ... 31

2.5.1 Network size .. 32

2.5.2 Network connectivity ... 32

2.5.3 Vertex degree .. 32

2.5.4 Average degree ... 33

2.5.5 Degree distribution ... 34

2.5.6 Clustering coefficient .. 35

2.6 Empirical findings .. 38

2.6.1 Average degree ... 42

2.6.2 Clustering coefficient .. 42

2.6.3 Degree distribution ... 43

2.7 Concluding remarks ... 46

CHAPTER 3 ANALYZING OPEN SOURCE SOFTWARE DEVELOPER

COLLABORATION NETWORKS ... 50

3.1 Introduction .. 50

3.2 Background .. 52

3.3 An empirical study with software bug-developer data 52

3.4 Network construction ... 56

www.manaraa.com

7

TABLE OF CONTENTS - Continued

3.5 Topological metrics ... 61

3.6 Empirical findings .. 63

3.7 Conclusions and future study ... 74

CHAPTER 4 COMPARISON OF TWO CLUSTERING COEFFICIENT DEFINITIONS

 .. 77

4.1 Introduction .. 77

4.2 Background .. 78

4.3 Topological metrics introduction ... 79

4.4 Numeric analysis .. 81

4.5 Numeric properties .. 83

4.6 Conclusions .. 91

CHAPTER 5 MODELING DEVELOPMENT PROCESS OF COMPLEX SOFTWARE

PRODUCTS ... 93

5.1 Introduction .. 93

5.2 An emperical study of open source packages .. 95

5.3 Review of existing models ... 98

5.4 Proposed two-phase network growth model .. 100

5.4.1 Rationales ... 101

5.4.2 Model description ... 103

5.4.3 Formal model description ... 106

5.5 Properties of the proposed model .. 109

5.5.1 Average degree ... 109

5.5.2 Clustering coefficient .. 110

5.5.3 Degree distribution ... 113

5.6 Numeric study .. 114

5.6.1 Clustering coefficient .. 115

5.6.2 Average degree ... 117

5.6.3 Degree distribution ... 118

www.manaraa.com

8

TABLE OF CONTENTS - Continued

5.7 Concluding remarks ... 120

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 123

REFERENCES ... 131

www.manaraa.com

9

LIST OF TABLES

Table 2.1 Basic information about five open-source software packages 27

Table 2.2 Symbols of basic network measures ... 31

Table 2.3 Topological measures of five function dependency networks 38

Table 2.4 Linear relationship between log p(k) and log k ... 45

Table 3.1 Bug developer data entry example .. 53

Table 3.2 Basic statistics about the two bug-developer data sets 55

Table 3.3 Symbols of network measures for bipartite networks 62

Table 3.4 Bug fixing data degree information .. 64

Table 4.1 Symbols of network measures .. 80

Table 4.2 Simulated degree distribution ... 88

Table 5.1 Topological measures of five function dependency networks 98

Table 5.2 Additional symbols used in the proposed model .. 106

Table 5.3 Various aspects of the proposed two-phase network growth model 107

Table 5.4 Basic measures of the proposed two-phase network growth model 108

www.manaraa.com

10

LIST OF FIGURES

Fig. 1.1 4 Ps in the software engineering field ... 16

Fig. 2.1 OpenSSH software function dependency network .. 39

Fig. 2.2 Httpd software function dependency network ... 40

Fig. 2.3 Gaim software function dependency network ... 40

Fig. 2.4 MySql software function dependency network ... 41

Fig. 2.5 GIMP software function dependency network .. 41

Fig. 2.6 Degree distributions of five software function dependency networks 44

Fig. 2.7 Logarithmically binned degree distributions of five software function

dependency networks .. 45

Fig. 3.1 Bug fixing network construction ... 58

Fig. 3.2 Degree distribution: bug-developer weighted bipartite networks from bug side 68

Fig. 3.3 Degree distribution: bug-developer un-weighted bipartite networks from bug side

 ... 69

Fig. 3.4 Degree distribution: bug-developer weighted bipartite networks from developer

side .. 71

Fig. 3.5 Degree distribution: bug-developer un-weighted bipartite networks from

developer side ... 72

Fig. 3.6 Degree distribution: developer-developer collaboration un-weighted networks 73

Fig. 4.1 Examples of both CWS and CNW are 0 .. 84

Fig. 4.2 Examples of both CWS and CNW are 1 .. 85

Fig. 4.3 Examples of CWS = CNW ... 86

Fig. 4.4 Log degree k vs. log count p(k) ... 87

Fig. 4.5 Degree effect: degree k vs. k(k-1)/2 * count ... 90

Fig. 5.1 Degree distributions of five software function dependency networks 97

Fig. 5.2 Clustering coefficients of networks generated by the RB model 100

Fig. 5.3 Two-phase network growth model .. 105

Fig. 5.4 Clustering coefficients of two-phase network growth model 115

Fig. 5.5 Average degree (T=4) of two-phase network growth model 117

Fig. 5.6 Degree distribution (T=4) of two-phase network growth model 118

www.manaraa.com

11

ABSTRACT

Open-source software becomes increasingly popular nowadays. Many startup

companies and small business owners choose to adopt open source software packages to

meet their daily office computing needs or to build their IT infrastructure. Unlike

proprietary software systems, open source software systems usually have a

loosely-organized developer collaboration structure. Developers work on their

“assignments” on a voluntary basis. Many developers do not physically meet their

“co-workers.” This unique developer collaboration pattern leads to unique software

development process, and hence unique structure of software products. It is those

unique characteristics of open source software that motivate this dissertation study. Our

research follows the framework of the four key elements of software engineering: Project,

People, Process and Product (Jacobson, Booch et al. 1999). This dissertation studies

three of the four P’s: People, Process and Product.

Due to the large sizes and high complexities of many open source software

packages, the traditional analysis methods and measures in software engineering can not

be readily leveraged to analyze those software packages. In this dissertation, we adopt

complex network theory to perform our analysis on open source software packages,

software development process, and the collaboration among software developers. We

intend to discover some common characteristics that are shared by different open source

www.manaraa.com

12

software packages, and provide a possible explanation of the development process of

those software products. Specifically we represent real world entities, such as open

source software source code or developer collaborations, with networks composed of

inter-connected vertices. We then leverage the topological metrics that have been

established in complex network theory to analyze those networks. We also propose our

own random network growth model to illustrate open source software development

processes. Our research results can be potentially used by software practitioners who

are interested to develop high quality software products and reduce the risks in the

development process.

Chapter 1 is an introduction of the dissertation’s structure and research scope. We

aim at studying open source software with complex networks. The details of the 4-P

framework will be introduced in that chapter.

Chapter 2 analyzes five C-language based open source software packages by

leveraging function dependency networks. That chapter calculates the topological

measures of the dependency networks extracted from software source code.

Chapter 3 analyzes the collaborative relationship among open source software

developers. We extract developer’s co-working data out of two software bug fixing data

sets. Again by leveraging complex network theory, we find out a number of topological

characteristics of the software developer networks, such as the scale-free property. We

also realize the topological differences between from the bug side and from the developer

side for the extracted bipartite networks.

www.manaraa.com

13

Chapter 4 is to compare two widely adopted clustering coefficient definitions, the

one proposed by Watts and Strogatz, the other by Newman. The analytical similarities

and differences between the two clustering coefficient definitions provide useful

guidance to the proposal of the random network growth model that is presented in the

next chapter.

Chapter 5 aims to characterize the open source software development process.

We propose a two-phase network growth model to illustrate the software development

process. Our model describes how different software source code units interconnect as

the size of the software grows. A case study was performed by using the same five open

source software packages that have been adopted in Chapter 2. The empirical results

demonstrate that our model provides a possible explanation on the process of how open

source software products are developed.

Chapter 6 concludes the dissertation and highlights the possible future research

directions.

www.manaraa.com

14

CHAPTER 1 INTRODUCTION

Open source software has been playing an increasingly important role in modern

companies especially for startup companies. Unlike its proprietary alternatives, open

source software packages do not charge any fees for firms and individuals to use.

Moreover all the source code is accessible to the public and allows any user to customize

based on the user’s special requirements (Johnson 2006; Colazo 2010). The developers

of open source software usually do not have a rigid management structure since most

developers choose to join and leave a project on a voluntary basis (Hahn, Moon et al.

2008; Singh 2011). Very few developers make their commitment choices based on

short term financial rewards. Developers usually join an open source software project

because of personal interest in coding. The loosely managed developer structure results

in the different software development process and different fashion of project

management compared with those of proprietary software. Those unique natures that

the open source software systems possess are likely to lead to different structures of

software source code, the most important part of the software product.

As open source software packages are expected to fulfill more and more business

needs, the size of those software packages increases dramatically and their software

structures become much more complicated over the years. Quantitative evaluation of

software architecture with large size is a complicated and often difficult task.

Traditional analysis methods and measures that have been utilized in software

www.manaraa.com

15

engineering field are no longer suitable to analyze those complicated software packages.

Many readily-available evaluation metrics such as the number of files in a package, total

lines of code, or the number of developers for a given project are not sufficiently

descriptive. Even measures such as complexity (Harrison, Samaraweera et al. 1996;

Kang and Bieman 1999), maintainability (Li and Henry 1993), and cohesion (Etzkorn,

Davis et al. 1998) often fail to fully capture the nature of software systems which are

becoming increasingly complex.

Thus, in order to gain meaningful insight into the structure of software systems,

software developers and analysts have to search for more powerful, more detailed and

more informative tools to serve their needs. Recently random network theory becomes

increasingly popular in analyzing complex systems. Topological measures from random

network theory and the related modeling techniques can afford a deeper level of

understandings regarding the formation and evolution of code-based software structures

and the processes governing the development of software systems.

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959; Erdos and Renyi

1960; Erdos and Renyi 1961) (ER) in 1959, random network theory has been applied to

the study of complex systems across a wide variety of domains (Barabasi and Albert

1999; Bilke and Peterson 2001; Barabasi, Jeong et al. 2002; Newman, Forrest et al. 2002;

Ancel Meyers, Newman et al. 2003; Shaw 2003; Wu and Kshemkalyani 2008; Zheng,

Zeng et al. 2008; Simpson, Hayasaka et al. 2011). Our research is aimed at extending

this emerging line of work by focusing on identifying unique characteristics of the

www.manaraa.com

16

structure of complex software systems and the structure of software developers, and more

importantly, developing models that can explain those structural characteristics.

Fig. 1.1 4 P’s in the software engineering field.

We intend to study the open source software by following a four P’s framework in

software engineering field. There are four P’s that are considered the key elements in

software engineering field: namely Project, People, Process and Product. Fig. 1.1 shows

the four P’s and their relations.

Project: the discipline of planning, organizing, securing, and managing resources to

achieve software development goals. Within the four P’s, project defines the overall

scope of the software development goals, procedure, milestones, cost, resources, and etc.

People: the prime movers in a software project including architects, developers,

testers, and their supporting management, plus users, customers, and other stakeholders.

www.manaraa.com

17

Process: a flow of control that can execute concurrently with other processes,

usually including requirement analysis, architectural and detailed design, implementation,

testing, deployment and maintenance.

Product: the artifacts of development, such as models, code, documentations, and

work plans. Product is final deliverable and thus the goal of a software project.

We choose to start our research by studying the final goal of the software project,

the Product. Chapter 2 presents a descriptive work on the structures of open source

software products. We choose five C-based open source software packages with

different package size and from different application domains. All of the packages are

widely adopted in their domain and hence are considered “successful” products. We

extract the function dependency networks from the software source code by representing

a function with a vertex and a function call with an edge. By leveraging the topological

measures that have been established in random network theory, we realize the five

function dependency networks possess the same three features: (1) average degree is

independent of network size, (2) clustering coefficient, in either of two definitions

proposed by Watts and Strogatz, and by Newman, is independent of network size, and (3)

the network is scale-free. Our empirical findings show that there are common structural

characteristics that are shared by open source software products across different size and

domain.

In Chapter 3, we extend our empirical study by analyzing another P in the Four P

framework, the People. Specifically we examine software developer’s collaboration

www.manaraa.com

18

networks that are extracted from two real world bug fixing data sets. The bug fixing

data sets contain information on which developer has fixed which bug at what time. We

extract two bug-developer bipartite networks, and then derive a developer-developer

collaboration network for each data set. In the bug-developer bipartite network, each

bug and each developer are represented by a vertex. An edge can only exist between a

bug and a developer, which indicates the developer has been working on solving that bug.

By examining the average degrees of the bug set and the developer set, we find the

average number of bugs that developers have been involved in changes as the size of the

open source software changes. In the developer-developer collaboration network, a

vertex represents a unique developer, and an edge connecting two vertices indicates that

the two developers represented by those two vertices have been working on at least one

same bug. Our analysis shows that both data sets’ collaboration networks are scale-free.

Since our empirical study involves clustering coefficient, one of the most useful

topological measures in random network theory, we perform an analytical study on that

measure in Chapter 4. We compare two widely adopted clustering coefficient

definitions, one proposed by Watts and Strogatz, the other by Newman. Our analytical

study shows that Watts-Strogatz’s definition is the mean of the ratio of local clustering

factors, and Newman’s definition is the ratio of the means of local clustering factors.

We also examine the lower bounds and upper bounds of those two definitions, and the

conditions to meet those extreme bounds. Our further analysis shows that the extremely

popular vertices have little impact on Watts-Strogatz’s clustering coefficient definition,

www.manaraa.com

19

whereas those popular vertices are the dominating factors for Newman’s definition. The

analytical results in Chapter 4, e.g. the impact factors of the two clustering coefficient

definitions, are used as part of the motivations when our network growth model is

proposed in Chapter 5.

We examine the third P in the Four P framework, the Process, in Chapter 5. We

aim at providing an explanation on the development process of open source software

packages. Specifically, we propose a two-phase network growth model to illustrate the

software development process. As the size of the software increases, the software

growth experiences two different growth mechanisms, namely two phases. The first

phase follows the hierarchical network model of Ravasz and Barabási (Ravasz and

Barabasi 2003). The second phase starts when the size of the software grows larger than

a threshold. In the second phase, software modules are connected by limited and

random inter-module links. The second phase strives to minimize the coupling across

software modules.

To validate the two-phase network growth model, we reuse the empirical results

from Chapter 2, the five function dependency networks extracted from the C Based open

source software packages, and the three common topological features that are shared by

those five function dependency networks. Both analytical and numerical studies show

that the proposed model reproduces the topological features observed in real-world

software packages. We then conclude that our model can be a reasonable explanation of

the open source software development process.

www.manaraa.com

20

Chapter 6 concludes our research findings and presents some possible future study

directions.

Our study will provide useful guidance for software engineering researchers and

practitioners in order to develop high quality open source software products, and reduce

risks and costs in the open source software development process.

www.manaraa.com

21

CHAPTER 2 ANALYZING COMPLEX SOFTWARE PRODUCTS WITH

FUNCTION DEPENDENCY NETWORKS

2.1 Introduction

High-quality architectures can offer software development efforts considerable

benefits, including improved productivity during development and maintenance cycles,

reduced vulnerability to attacks and system failures, and increased understandability and

extensibility. However, evaluating the architectures of software systems, one of the

most complex man-made artifacts ever created, is a complicated and often difficult task

(Harrison, Samaraweera et al. 1996; Kang and Bieman 1999; Kanmani, Uthariaraj et al.

2004). Simple evaluation metrics, such as the number of files, functions, lines of code,

or developers, and more sophisticated metrics measuring (Chhabra and Gupta 2010) such

properties as complexity (Etzkorn, Davis et al. 1998; Wang, Chung et al. 2000; Fothi,

Nyeky-Gaizler et al. 2003; Ma, He et al. 2010; Shin, Meneely et al. 2011),

maintainability (Li and Henry 1993; Bagheri and Gasevic 2011), quality (Sarkar, Kak et

al. 2008; Eichinger, Kramer et al. 2010), coupling (Li and Li 2011) and cohesion (Ott and

Bieman 1998) currently available in the literature are deemed not sufficiently informative

(Wang, Chung et al. 2000; Taherkhani, Korhonen et al. 2011). There is still a great need

for methodologies that can help us gain deeper insights into the structures of software

systems and the processes governing their development.

www.manaraa.com

22

In recent years, there have been a large number of studies devoted to characterizing

and explaining a wide variety of complex networks, such as the World-Wide-Web, the

Internet, movie actor collaboration networks (Watts and Strogatz 1998), science

collaboration networks (Newman 2001; Newman 2001; Newman 2001), and cellular

machinery networks (Milgram 1967; Barabasi and Albert 1999; Watts 1999; Amaral,

Scala et al. 2000; Albert and Barabasi 2002; Barabasi, Jeong et al. 2002; Newman, Watts

et al. 2002; Newman 2003; Goodreau, Kitts et al. 2009; Li and Niu 2011; Simpson,

Hayasaka et al. 2011). In this chapter, we apply and extend the rich constructs and

models produced by this stream of research in analyzing software systems. We model a

software package as a network (also called a graph), in which a node (also called a

vertex) represents a function in the package and an edge (also called an arc) connecting

two nodes reflects the existence of dependency (i.e., function call) between the functions

represented by the nodes. This function dependency network provides a macroscopic

view of software structure while obviating the minutiae of source code particulars. As

software systems are typically composed of numerous functions, with interactions among

them directly reflecting the design and execution of the systems, studying this network

can lead to valuable understanding of the underlying systems.

The rest of the chapter is organized as follows. We first introduce some

background information of software engineering, open source software packages and

random graph theory in Section 2. In Section 3, we present five widely-adopted

C-based open source software systems as our empirical study subjects. Section 4

www.manaraa.com

23

explains how we construct the function dependency networks for the five real world

software packages. In Section 5, we introduce several important topological measures

that are widely leveraged in random network analysis. Specifically we introduce two

different definitions of clustering coefficient. Our empirical findings are summarized in

Section 6. The analysis reveals a set of interesting features exhibited by the function

dependency networks constructed after the packages. Finally, we conclude the chapter

with a summary of contributions and a discussion of possible future research directions in

Section 7.

2.2 Research backgrounds

Quantitative evaluation of software architecture is a complicated and often difficult

task. Many readily-available evaluation metrics such as the number of files in a

package, total lines of code, or the number of developers for a given project are not

sufficiently descriptive. Even measures such as complexity (Etzkorn, Davis et al. 1998;

Wang, Chung et al. 2000), maintainability (Li and Henry 1993), and cohesion (Ott and

Bieman 1998) often fail to fully capture the nature of software systems which are

becoming increasingly complex (Wang, Chung et al. 2000). Thus, in order to gain

meaningful insight into the structure of software, systems developers and analysts must

turn to more detailed indicators. To this end we argue that topological measures from

random graph theory and the related modeling techniques can afford a deeper level of

www.manaraa.com

24

understandings regarding the formation and evolution of code-based software structures

and the processes governing the development of software systems.

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959) (ER) in 1959,

random graph theory has been applied to the study of complex systems across a wide

variety of domains (Albert and Barabasi 2002; Newman 2003). The first step of

adopting random graph theory is to represent a real complex system by defining a graph

composed of weightless and size-less vertices and the edges connecting those vertices.

A vertex usually represents a true entity that exists in the real complex system. An edge

is to describe a relationship between two vertices. The relationship between two

vertices captures the atomic dependency between those two entities that are represented

by the two vertices. Sometimes, along with the connection of those two vertices, the

edge can also define the degree and the direction of the inter-entity relationship. For

example, if a Web page is represented by a vertex, then the edge between two vertices

can be leveraged to represent a hyper textual link between two Web pages. Moreover,

the edge may have its direction which determines the hyper link direction between the

two Web pages. And the edge may also bear a weight that describes the level of

connections, namely the number of hyperlinks, between those two Web pages. Since

the entities usually contain rather simple internal structures, it is intuitively true that

describing the atomic relationship between two entities is relatively straightforward.

Once the atomic inter-entity relationship is defined, assuming the homogeneity of

those relationships, researchers can obtain the system level characteristics by aggregating

www.manaraa.com

25

the effect of a large number of atomic relationships. Random graph researchers have

developed a number of useful metrics and methods to analyze the aggregated effect of the

relationships. Detailed information can be found in following sections. Those metrics

are believed to capture the system level characteristics of the complex system which in

general sense are difficult to obtain.

Despite the breadth of random graph analysis for complex systems, however, very

few studies (e.g., (Potanin, Noble et al. 2005)) have sought to use this framework to

analyze software systems. Our research is aimed at extending this emerging line of

work in random graph theory to describe the architectural structure of software packages

while keep the main characteristics at the detailed design level. Our research can

provide an infrastructure to further examine the software structure and hopefully provide

explanatory evidences to decipher the software development process in the near future.

As is common in the random graph literature, we use the terms “graph” and “network”

interchangeably in our research.

2.3 Empirical analysis of real-world software packages

We have identified five widely-adopted open-source software packages—OpenSSH

(a secure communication client), Httpd (Apache Web server), Gaim (a multi-protocol

instant messaging client), MySQL (a database management system), and GIMP (GNU

Image Manipulation Program)—as the focus of our inquiry. We specifically chose

open-source software packages because of the following two reasons. First of all, open

www.manaraa.com

26

source software packages bear the nature of sharing their source code with the public

users. Hence it is fairly easy to achieve their source code without too much hassle and

liability concerns. Second of all, the success of an open-source software package is

largely determined by its qualities whereas a proprietary software package may achieve

its wide deployment by the financial advantage or readily available marketing channels of

the software’s owner company. Thus we may conservatively conclude that a popular or

widely adopted open source software package reflects the good quality of that software

package. At this stage of our research, we are more motivated to reveal the

characteristics of good quality software packages than bad or mediocre ones. All of the

five software packages that we chose to analyze had proven records of shining popularity

and high rate of being downloaded based on voluntary basis. All of those packages are

developed using the C programming language, which continues to be one of the most

important languages in system software development. We chose C-based software

packages due to C language’s relatively simple architectural structure. Namely C-based

software packages have easily identifiable function calls among C functions. And those

function calls are the clear signals of function dependency which is the key point of a

software package’s architectural complexity, reliability, and extensibility. Table 2.1

contains some basic information about the packages.

While each individual software package may bear its unique micro structure, its

overall architecture shares some common characteristics as a result of commonly adopted

open source software development principals. For example, open-source software

www.manaraa.com

27

packages are usually developed on a volunteer basis. The development management is

executed in a loosely controlled manner. These similarities intrigue us to hypothesize

that there are some common properties universally possessed by different open-source

software packages across a broad range of purpose, size, and complexity. We are more

interested in such universally possessed properties than in the specifics of a particular

software package.

Table 2.1 Basic information about five open-source software packages

Package Version Size (KB)
Number of

files

Total number

of lines

Number of lines

of source code

OpenSSH 4.0p1 1,978 273 74,087 40,817

Httpd 2.0.54 3,717 302 116,698 60,927

Gaim 1.3.1 6,386 477 229,481 137,030

MySql 4.1.12 11,715 750 371,748 188,099

GIMP 2.2.8 24,611 2,120 759,056 488,503

2.4 Network construction

In order to leverage random network theory to analyze complex software packages,

we have to firstly abstract the software package to edge-connected vertices as described

in the above section. From the software engineering point of view, naturally, we choose

the source code of the software packages as our target object. The source code of a

www.manaraa.com

28

complex software package usually possesses a hierarchical structure. For example, a

Java based software project usually contains a number of Java packages, each of which

contains a number of Java files. Any Java file may contain one or more Java classes

which in turn contain a number of parameters and/or methods. Each Java method

contains a number of variables and a number of lines of code. Any level of

self-contained source code group may be represented as a vertex in the network which

brings in more flexibility and, on the other hand, more difficulty in choosing a reasonable

entity as the network vertex.

Since we choose C programming language based software packages as the study

subjects, and fortunately, C-based software packages carry a rather flat architectural

structure. Specifically, the building block of a C-based package is functions by nature.

Each function must have a unique function name to distinguish itself throughout the

entire package. As function is the smallest self-contained operational unit of a language

C-based software system, we focus on analyzing the dependency relationships among the

functions in a package. For each package, we construct a function dependency network

representing each unique function in a unique source file with a vertex, and indicating the

existence of dependency between two functions (i.e., at least one of the two functions

calls the other) with an edge between the corresponding nodes. At this stage of our

research, we are not aimed at revealing the internal structure of a function. We do not

differentiate function “importance” by reading the code inside a function. Rather we

would like to study how functions are connected with one another, and how those

www.manaraa.com

29

connections will affect the architectural characteristics of the software packages. For

example, a heavily connected vertex indicates an important function; and a heavily

connected network implies high coupling in general, etc.

Note that the function dependency networks we extract from software packages are

un-directed rather than directed. That is, we intentionally ignore the direction of

function calls when we construct the networks. We choose to adopt this strategy for two

main reasons. First, the two definitions of clustering coefficient we use in this paper are

mostly applied to undirected graphs. Similar approaches have been adopted in other

studies. For example, Barabasi (Barabasi and Albert 1999; Barabasi, Albert et al. 1999)

applied undirected networks to analyze the structure of the World-Wide-Web, where

vertices represent Web pages and edges represent hyperlinks between Web pages,

although the hyperlinks are indeed directed. Ignoring the edge direction and weight

allows us to study network properties such as clustering coefficient, going beyond basic

degree distributions. No widely-accepted definitions of clustering coefficient for

directed, weighted networks are yet available. Second, we are particularly interested in

whether two functions are related (connected) than in the direction of their connection in

this study. The fact that two functions are related is by itself worth examining and can

have important software engineering implications. For example, if a few functions are

highly connected to each another, and thus form a complete or semi clique, regardless of

direction of function calls, one may suspect that these functions are written and

www.manaraa.com

30

maintained by the same team of software developers. As such, functional relations may

provide useful insights for developer social network study.

Furthermore, we ignore the weight attribute on the edges when constructing the

function dependency networks (Yook, Jeong et al. 2001). Every edge bears the same

weight. That is, we do not differentiate connected function pairs based on the number of

function calls between them. In software engineering field, low coupling is an

important pursuit that every software developer has to consider. Coupling is defined by

a “whether or not connected” relation which means the coupling situation between any

pair of connected functions remain the same regardless how strong the connection is

between the function pair. To better analyze how coupling is formed among functions,

we choose to focus on whether two functions are connected rather than how they are

connected.

In a C-based system, we need to treat self loops carefully. In a network, a self

loop denotes the situation that a vertex has an edge connecting itself. In a function

dependency network, a self loop means a function calls itself, which, in software

engineering field, is referred to as the recursion. While recursion is meaningful and can

often significantly reduce the length of the code, it is not directly related to our research

objectives. Since we are more interested in analyzing coupling among functions, a

recursive function does not contribute to the coupling in our research domain. Thus, we

specifically remove the self loops when constructing the function dependency networks.

www.manaraa.com

31

2.5 Network topological measures

After constructing the function dependency networks for the real world software

packages, we aggregate the atomic inter-function relationships to the system level

metrics. We leverage several topological measures that are widely adopted in random

network theory. Table 2.2 summarizes some symbols used in the rest of the paper.

Table 2.2 Symbols of basic network measures

Symbol Measure

N Number of nodes in the network, referred to as the network size

M Number of edges in the network

i
k Degree of node i , i.e., the number of edges connected to the node

k Average degree.
1

1 2N

i

i

M
k k

N N=

= =∑ .

()p k

The fraction of nodes in the network that have degree k , or equivalently, the

probability that a node chosen uniformly at random has degree k

(1)
C Clustering coefficient in the Watts-Strogatz definition

(2)
C Clustering coefficient in the Newman definition

Rand
C Expected clustering coefficient of a purely random graph

www.manaraa.com

32

2.5.1 Network size

N is the number of vertices, namely functions, in the network. It reflects the size

of the network. This variable is a direct indicator on the network complexity and system

run time. The higher the N, the more complicated the network is. Since in a C-based

system, every function has a unique function name, the computation of N is quite

straightforward.

2.5.2 Network connectivity

M is the number of edges, namely function calls, in the network. This variable

reflects the system connectivity of the network. When the size of network, N, is the

same, the higher the M, the more heavily connected the network is. As described in the

previous section, M only counts the unique pair of connected vertices. That is, any

unique connected pair of functions counts one regardless how many times those two

functions call each other. Also as we described before, self loops are removed due to

the scope of our research. The number of edges also counts the connections between

two different vertices.

2.5.3 Vertex degree

The degree of node i ,
i

k , is the number of edges connected to that node. The

variable
i

k reflects the connectivity around an individual vertex. Thus the variable can

www.manaraa.com

33

be leveraged as an indicator of the importance or popularity of that individual vertex. If

a vertex has a significantly high degree comparing with other vertices in the network, it

usually implies that vertex represents an important function which calls or is called by

many other functions. Since the function dependency network is undirected and

weightless,
i

k refers to the unique number of vertices that are connected to node i,

regardless which function is the caller and which one is the callee. Also since self loops

are removed, those connected vertices that are being counted into the degree can not be

vertex i itself.

2.5.4 Average degree

The average degree k is the arithmetic mean of the degree values of all the

vertices in the network. Due to the impact of the network size N, M itself can not be

used to describe the level of connectivity of the network. Thus the average degree k is

usually leveraged to describe the overall connectivity of the network. On a normal case,

the higher the k , the more connected the network is. Note since the network is

undirected, every edge is counted twice when the average degree is computed. The

reason is because every edge is used to compute the value of degree for both vertices that

that edge connects. If the network were constructed as a directed network, every edge

should be counted only once.

www.manaraa.com

34

2.5.5 Degree distribution

Degree distribution, the distribution of ()p k , is also very useful in charactering a

network. By definition, ()p k is the fraction of nodes in the network that have degree

k , or equivalently, the probability that a node chosen uniformly at random has degree k .

In our research, ()p k is calculated as counting the number of vertices that have the

same degree value. The average degree k may be too abstract to catch the detailed

information of the network connectivity. Specifically the impact of a heavily connected

vertex may be overwhelmed by a large number of vertices that have low degree values.

Thus the distribution of ()p k is adopted in order to reveal more detailed insight of the

network connectivity. The degree distribution may imply the variance of vertex degree

values.

The display of the distribution of ()p k is usually performed by plotting ()p k

against the sorted k values. In most random network research works, the logarithmic

values of both ()p k and k are used to display the plot.

While the degree distribution of a random graph is binomial or Poisson in the limit

of large graph size, real-world complex networks have been found to exhibit very

different degree distributions, indicating that they are not purely random and may have

formed following particular philosophies. In particular, networks with power-law

degree distributions (i.e., ()p k k α−
� , and log ()p k is linear with regard to log k) have

been the focus of a large number of studies (Barabasi and Albert 1999; Barabasi, Albert

et al. 1999; Faloutsos, Faloutsos et al. 1999; Dorogovtsev and Mendes 2001; Albert and

www.manaraa.com

35

Barabasi 2002; Barabasi, Jeong et al. 2002). Such networks are referred to as scale-free

networks (Barabasi and Bonabeau 2003). Many real-world networks, including the

World-Wide-Web, the Internet, the actor collaboration network, the power grid network,

and science citation networks, have been found to be scale-free (Watts and Strogatz 1998;

Barabasi and Albert 1999; Newman 2003). Some of them, such as the actor

collaboration network and the power grid network, indeed only partially exhibit

power-law degree distributions (Barabasi and Albert 1999). In these networks, the

frequencies of low-degree nodes are lower than what are expected from power-law

distributions. The log ()p k -vs- log k curves of the networks have a hockey stick shape

with a straight line in the middle and a bended head at the beginning. Moreover, there is

a considerable amount of noise on the tail, indicating the existence of large variations in

the frequencies of nodes with very high degrees. Despite such deviations, for model

building purposes and simplicity, in many cases researchers still classified such networks

as scale-free, as the majority of their nodes follow power-law distributions (Barabasi and

Albert 1999).

2.5.6 Clustering coefficient

Clustering coefficient measures the extent to which being a neighbor is a transitive

property. Clustering coefficient captures the level of connectivity of a local community

within a network. The higher the clustering coefficient, the more connected the

www.manaraa.com

36

community is. A special case of the heavily connected group is “clique” which includes

a group of vertices that every vertex is connected to each other within the clique.

A high clustering coefficient in the function dependency network implies that a

group of functions are highly connected to one another. That group of highly connected

functions is likely to represent a self-contained software module, or subsystem within the

software system. The heavy connections within that module indicate those functions are

strongly related and thus are strongly alike from the functionality standpoint. In other

words, a highly connected software module indicates the high cohesion within that

module.

Cohesion is a measure of how strongly-related the functionality expressed by the

source code of a software module is. In a system with high cohesion, the source code

readability and extensibility are usually high. Like low coupling, high cohesion is

another important software engineer incentive that software developers would like to

chase. We hope clustering coefficient can provide a quantitative measure of the level of

software cohesion.

Clustering coefficient has two commonly used definitions (Watts and Strogatz

1998; Newman 2003). Watts and Strogatz (Watts and Strogatz 1998; Watts 1999)

define a clustering coefficient for any node i that has at least two neighbors (the

clustering coefficient of a node with degree zero or one is defined as zero):

(1)

(1) / 2

i
i

i i

a
C

k k
=

−
, (2.1)

www.manaraa.com

37

where ia is the number of edges among the neighbors of node i . This is

equivalent to the following more graphical formulation

(1) Number of triangles connected to node

Number of connected triples centered on node
i

i
C

i
= , (2.2)

where a connected triple means a single node connected to an unordered pair of

others.

The clustering coefficient for the entire network, is then defined as the average

(1) (1)

1

1 N

i

i

C C
N =

= ∑ (2.3)

Another definition of clustering coefficient introduced by Newman (Newman,

Strogatz et al. 2001; Newman, Watts et al. 2002; Newman 2003) is

(2) 3 Number of triangles in the network

Number of connected triples in the network
C

×
= (2.4)

The constant three is used to normalize (2)
C into the [0,1] range, as each triangle

contributes to three connected triples centered on different nodes. The two definitions

are similar in that (1)
C calculates the mean of ratios while (2)

C the ratio of means.

However, they can give quite different results, as (1)
C weights the contributions of

low-degree nodes more heavily while (2)
C treats all nodes equally.

Clustering coefficient also helps to tell whether a network is purely random. A

random graph, defined by Erdős and Rényi (Erdos and Renyi 1959; Erdos and Renyi

1960; Erdos and Renyi 1961), consists of N nodes connected by M edges chosen

randomly from (1) / 2N N − possible edges. If define Rand
C as the expected

www.manaraa.com

38

clustering coefficient of a purely random graph, the clustering coefficient of a random

graph has an expected value of /Rand
C k N= .

2.6 Empirical findings

By adopting the topological measures in the previous section, we perform our

analysis on the five real world software packages. We present some observations

concerning the properties of the function dependency networks below, focusing on three

topological measures—average degree, clustering coefficient, and degree

distribution—which are considered particularly informative (Albert and Barabasi 2002;

Newman 2003).

Table 2.3 Topological measures of five function dependency networks

Network N M k
(1)

C (2)
C Rand

C

OpenSSH 1,221 5,436 8.90 0.160 0.038 0.00729

Httpd 2,061 5,005 4.86 0.108 0.028 0.00236

Gaim 5,181 15,009 5.79 0.084 0.030 0.00112

MySql 5,024 19,745 7.86 0.158 0.034 0.00156

GIMP 14,380 45,224 6.29 0.132 0.023 0.00044

www.manaraa.com

39

Table 2.3 summarizes several topological measures. We refer to the function

dependency network of a software package by the package name. For example, the

function dependency network of the MySql package is referred to as the MySql network.

The data support the intuition that a larger software package also has a larger function

dependency network. Minor exceptions exist. For example, the size of the MySql

package is approximately twice of that of the Gaim package, but the size of the MySql

network is slightly smaller than that of the Gaim network. Like package size, network

size spans a wide range, from about a thousand to over ten thousand. Fig. 2.1 to 2.5

shows the networks drawn with Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

Fig. 2.1 OpenSSH software function dependency network.

www.manaraa.com

40

Fig. 2.2 Httpd software function dependency network.

Fig. 2.3 Gaim software function dependency network.

www.manaraa.com

41

Fig. 2.4 MySql software function dependency network.

Fig. 2.5 GIMP software function dependency network.

www.manaraa.com

42

2.6.1 Average degree

While network size spans a wide range, average degree varies only slightly, ranging

approximately from five to nine. There is also no clear trend of variation on average

degree as the network size increases. This seems to imply that average degree is

independent of network size, although, strictly speaking, the five networks are distinct

software packages, rather than different versions of the same software package. This

finding provides some support to our hypothesis that there are some common topological

properties shared by different software packages over a wide range of purpose, size, and

complexity.

2.6.2 Clustering coefficient

Table 2.3 lists the clustering coefficient measures of the five real world software

packages based on three definitions: Watts and Strogatz’s definition (1)
C , Newman’s

definition (2)
C , and Erdős and Rényi’s definition Rand

C .

Clustering coefficient is a useful measure in charactering a network. It helps to

tell whether a network is purely random. Based on Erdős and Rényi’s model, the

clustering coefficient of a random graph has an expected value of /Rand
C k N= with N

being the number of nodes and M being the number of edges in the random graph.

The clustering coefficient of any of the five networks (Table 2.3) is much larger

than that of a random graph with the same N and M . The networks are far from

www.manaraa.com

43

random graphs. The five networks also appear to have very similar clustering

coefficients, no matter which of the two definitions is used, although their sizes are

largely different. This seems to imply that the clustering coefficient of a software

function dependency network, in either of the two definitions, is independent of network

size, although the five networks are distinct software packages rather than different

versions of the same software package. This finding again provides some support to our

hypothesis that there are some common topological properties shared by different

software packages over a wide range of purpose, size, and complexity.

2.6.3 Degree distribution

Fig. 2.6 shows the degree distributions, the distribution of ()p k , of the five

function dependency networks. They all appear to be approximately power-law

distributions, as log ()p k appears to be approximately linear with regard to log k , other

than a bended head and some noise on the tail, similar to what have been observed in the

actor collaboration network and the power grid network (Barabasi and Albert 1999). To

better analyze the degree distributions of the networks, we have applied logarithmic

binning (Adamic) to smoothen the original data (Fig. 2.7). The logarithmically binned

degree distributions also show that the five real-world networks seem to follow

approximately power-law degree distributions. In order to statistically analyze the

power-law property, we use linear regression to test the relationship between log ()p k

www.manaraa.com

44

and log k . As shown in Table 2.4, the coefficient of log k is statistically significant at

the .001 level and the R
2
 is over .9 for every network (over .95 for GIMP and Httpd),

indicating that the linear model can adequately reflect the relationship between log ()p k

and log k . Thus, the five function dependency networks, similar to the actor

collaboration network and the power grid network (Barabasi and Albert 1999), can be

considered roughly scale-free and are far from random graphs. The networks also have

very similar exponents (α ranging from 1.32 to 1.86), as Potanin et al. (Potanin, Noble et

al. 2005) predicted.

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

Log k

L
o
g
 p

(k
)

)

)

OpenSSH

Httpd

Gaim

MySql

GIMP

Fig. 2.6 Degree distributions of five software function dependency networks (Logarithm

of base two is used throughout this chapter).

www.manaraa.com

45

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

L
o

g
 p

(k
)

Log k

OpenSSH

Httpd

Gaim

MySql

GIMP

Fig. 2.7 Logarithmically binned degree distributions of five software function

dependency networks.

Table 2.4 Linear relationship between log ()p k and log k

Network R
2
 Sig.

OpenSSH 0.906 0.0001

Httpd 0.959 0.0001

Gaim 0.940 0.0001

MySql 0.928 0.0001

GIMP 0.958 0.0001

In summary, our empirical analysis reveals the following features of a software

function dependency network: (1) average degree is independent of network size, (2)

www.manaraa.com

46

clustering coefficient, in either of two definitions, is independent of network size, and (3)

the network is scale-free.

2.7 Concluding remarks

Inspired by the increasing popularity of open source software systems, and a recent

growth of random graph theory research, we model the real world software packages with

function dependency networks. We obtain the source code of five C-based open source

software packages. Then we construct an abstract network for each one of the software

packages with the vertex representing a function and the edge as a function call. In

order to keep our research focal point concentrated on the software coupling and software

cohesion, we ignore the direction and the number of calls for the function dependency.

Thus the function dependency networks that we construct are undirected and

un-weighted. Driven by the same incentive, we also ignore the self loops which indicate

a function call from a function to itself, namely recursive function calls. Once the

function dependency networks are constructed, we leverage several widely adopted

topological measures to analyze those networks. Those measures are to reveal some

system level coupling and cohesion signals. Our empirical analysis shows three features

of a software function dependency network: (1) average degree is independent of network

size, (2) clustering coefficient, in either of two definitions, is independent of network

size, and (3) the network is scale-free. These findings provide some support to our

www.manaraa.com

47

hypothesis that there are some common topological properties shared by different

software packages over a wide range of purpose, size, and complexity.

The results of this work can be used as a starting point to quantitatively analyze

software architectural structures. They can also be used to evaluate and compare

developed packages in terms of such properties as modularity, intra-module cohesion,

and inter-module coupling. The usage of our research does not limit to the open source

software systems. Software companies can easily adopt our approach as a tool to

examine the architectural structure of their software products since they have the full

control of their own software source code. Although C-based software packages are

used to perform our analysis, a similar framework can be easily created in order to

analyze software systems that are built on other programming languages. For example,

we can easily construct a software unit dependency network for a Java-based system by

defining vertex as a Java object and edge as a Java object reference. Once the

dependency network has been constructed, the similar set of topological measures can be

calculated to examine the software system.

Our study opens up several avenues for further research.

First, while we have empirically studied several distinct open-source software

packages, investigating networks built from historical versions of the same software

package may generate useful insights into the ways software grows and changes over

time and may be more appropriate in revealing the true scaling properties of the

networks.

www.manaraa.com

48

Second, while we have modeled software packages as un-directed, un-weighted

networks of functions, considering the direction and weight of function calls may reveal

additional useful information about software packages.

Third, while we have interpreted the degree distribution as being approximately

power-law, future research may conduct finer analysis (e.g., fitting the degree distribution

with a stretched-exponential) to reduce the statistical noise on the tail.

Fourth, while all five software packages are considered “popular” or “good quality”

software systems, comparing the software systems with different popularities in the same

domain would be worth more attention. For example, comparing several Instant

Messenger (IM) software systems with different download rates will be likely to reveal

more insight of successful software packages.

Fifth, while all five software packages investigated in our empirical study are

written in C, a procedural language, it would be interesting to examine software packages

written in Object-Oriented (OO) languages, such as C++, C#, and Java, and see how OO

features, such as encapsulation, inheritance, and polymorphism, affect the structures of

software packages and the processes governing their development.

Network-based analysis of software packages and software engineering efforts

provides many intriguing possibilities for future research. Social networking theory is

likely to provide guidelines on community discovery when analyzing software authorship

networks (Watts, Dodds et al. 2002). Bipartite graph analysis may provide a framework

for analyzing the relationships between developers and software components. Further

www.manaraa.com

49

research and improved understanding may lead to the development of useful metrics that

provide guidance to engineers and analysts in the development of complex software

systems.

www.manaraa.com

50

CHAPTER 3 ANALYZING OPEN SOURCE SOFTWARE DEVELOPER

COLLABORATION NETWORKS

3.1 Introduction

As the size and the complexity of software applications grow over the past few

decades, the collaboration among software developers becomes increasingly important

(Hahn, Moon et al. 2008; Singh 2011). That a small number of developers finish a

software application single-handedly is no longer a common scenario. Software

developers have to rely on other developers in order to deliver the software products on

time and with satisfying quality. Thus analyzing software developer collaborations is of

great interest to both researchers and software engineering practitioners. For example,

people are interested to know how many members a functional development team should

be composed of in order to have the optimal performance, how balanced the work load of

each team member should be, and how many tasks the technical leader of the team should

have at any given time. The answers to those questions will provide useful insight for

software practitioners in order to achieve a better performance in software development

process. However the software developer collaboration is usually complicated for large

software systems. Specifically how to define a collaborative relation between two

developers is hard to be unanimously agreed. Furthermore in commercial companies

the software developer structures are usually confidential and not available for the

www.manaraa.com

51

general public to analyze. The complexity of the developer collaboration and the lack of

collaboration practice data result in the fact that few research works have been delivered

in that domain (Johnson 2006; Colazo 2010). In this chapter, we aim at analyzing the

software developer collaborations by leveraging complex network theory. We choose

two open source software applications, MediaWiki and Gentoo, for our empirical

analysis. We parse through the bug fixing data for those two applications and define the

collaborative relation among developers by considering the co-working experience on a

same bug. Since the numbers of bugs and developers are quite large, we perform our

analysis by adopting graph theory. Specifically we construct the bug-developer bipartite

graphs and the developer-developer collaboration graphs out of the real bug fixing data

sets. We then calculate a number of topological measures including the degree

distributions for those graphs. Our findings on the topological characteristics can

motivate further studies on developer collaborations.

The rest of the chapter is organized as follows. We first introduce some

background information in Section 2. In Section 3, we briefly describe the two data sets

that we choose as our empirical study subjects. Section 4 explains how we construct the

bug-developer bipartite networks and the developer-developer collaboration networks for

the two real data sets. In Section 5, we introduce several important topological

measures that are widely leveraged in network analysis. Our empirical findings are

summarized in Section 6. Finally, we conclude the chapter with a summary of

contributions and a discussion of possible future research directions in Section 7.

www.manaraa.com

52

3.2 Background

We anticipate that the bug fixing processes and developer collaborations of

different open source software packages share some common underlying properties.

For example, it is intuitively correct that a large number of bugs are fixed by a small

number of developers who are more experienced. On the other hand, the majority of

developers is not as much experienced, and thus is involved in a less number of bugs that

are fixed. That intuition follows the same mechanism of the rich get richer model

(Barabasi and Albert 1999) which is the most popular generative model for the scale free

property.

In complex network theory, a network is described as scale free if the network’s

degree distribution follows the power law (Newman, Strogatz et al. 2001). A detailed

description of the power law and the scale free property has been introduced in Section

2.5.5.

3.3 An Empirical study with software bug-developer data

From the bug repositories, we have downloaded and crawled the bug and developer

data of MediaWiki (https://bugzilla.MediaWiki.org/) and Gentoo (http://bugs.gentoo.org).

We chose those two data sets because both software systems are considered successful in

its application domain. At this stage of our research, we are more interested to analyze

www.manaraa.com

53

the successful software systems than unsuccessful ones. While each software system

may bear its unique software architecture, development process and project management

method, we hope to demonstrate some common characteristics in bug-fixing and

developer collaboration process.

Both data sets have the same data format. For each bug entry, either data set

contains the following six data fields: bug id, developer id (denoted by developer’s email

address), time stamp, subject, removed content, and added content. Table 3.1 shows an

example of the data entry.

Table 3.1 Bug developer data entry example

Bug

ID

Developer Time Subject Removed Added

1 joe@hot.com

2006-11-29

21:45:59

Status NEW

1 joe@hot.com

2006-11-30

23:55:29

Status NEW RESOLVED

2 jane@cool.com

2006-11-10

20:18:32

AssignedTo jim@Jmail.com jane@cool.com

www.manaraa.com

54

In Table 3.1, the primary key is the combination of bug id, developer and time.

The bug ID alone can not be used as the primary key of that table. As shown in Table

3.1, a bug, identified by an integer, may have multiple entries in a data set. Each entry

indicates a status change of the bug. When the “Added” field is “RESOLVED,” it

indicates the bug is fixed. Keep in mind a bug may reappear in the table after it is

resolved. The reappearing scenario is common in the software engineering field which

indicates the same bug is detected again after that bug is considered fixed.

The combination of bug ID and developer can not serve as the primary key either

since there are duplicated bug-developer pairs in either one of the data sets. As shown

in Table 3.1, the developer joe@hot.com and bug 1 are associated on two different data

entries. The differences between those two entries lie in “Time,” “Removed,” and

“Added” fields. Intuitively, the first entry indicates that bug 1 was discovered by the

developer joe@hot.com. The second entry which was added about a day later reflects

the fact that bug 1 was fixed by the same developer.

In this chapter, we will only consider the associative relations between bugs and

developers, and will ignore the context of how those bugs and developers are related.

Namely, we are only interested at the first two columns, Bug ID and Developer, and not

the last four columns in Table 3.1. If we only consider Bug ID and Developer, the first

two rows in Table 3.1 demonstrate that the same pair of bug ID and developer, e.g.

joe@hot.com and bug 1, can appear on multiple data entries. In this chapter we refer

www.manaraa.com

55

multiple data entries associating with the same pair of bug and developer the duplicated

bug-developer pairs.

In the following sections, we will discuss two different analysis methods depending

on how we treat bug-developer duplications. In the first analysis method, we allow and

consider the bug-developer duplications. Secondly, we ignore the bug-developer

duplications, since our main focus of this research work is whether a specific bug and a

specific developer are related than how strongly that pair of entities is related.

Table 3.2 Basic statistics about the two bug-developer data sets

Package
Number

of Bugs

Number of

Developers

Number of

Bug Entries

Number of Unique

Bug-Developer Pairs

MediaWiki 16,263 2,646 86,265 35,656

Gentoo 218,387 20,322 1,232,735 580,974

Table 3.2 shows the basic statistics of the two real world bug-developer data sets.

The numbers of bugs and developers count unique bugs (identified by an integer) and

developers (identified by an email), respectively. The number of bug entries counts the

total number of entries in the data sets by considering duplicated bug entries or developer

entries. For example, in Table 3.1, the number of bug entries is 3, the number of bugs is 2

(bug 1 and bug 2), and the number of developers is 2 (joe@hot.com and jane@cool.com).

The number of unique bug-developer pairs excludes the duplications of bug-developer

www.manaraa.com

56

pairs. In Table 3.1, the first two rows will count 1 since they are both regarding bug 1

and joe@hot.com. Thus the number of unique bug-developer pairs is 2.

3.4 Network construction

As the sizes of the two bug-developer data sets are very large, we choose a network

approach to perform our analysis because network theory barriers the natural strength of

analyzing large and complicated systems without loosing the overall system level

characteristics.

To start the network analysis, we need to construct a network out of the real world

bug-developer data set. We first construct a developer-bug bipartite network. A

bipartite network is composed of two disjoint sets of vertices. Every edge connects a

vertex in each one of the disjoint sets. There are no edges between any vertices within a

set. For our data set, each developer is represented by a vertex. All vertices denoting

developers form a set of developer vertices. Similarly we form a set of vertices each of

which represents a bug. Since every data entry in the data set indicates a relation

between a bug and a developer, naturally that data entry can be represented by an edge

connecting a developer vertex and a bug vertex. Since there are no data entries referring

two bugs or two developers, it eliminates the possibility of an edge within two developer

vertices or two bug vertices. Thus, the developer-bug data set forms a bipartite network

by default.

www.manaraa.com

57

Fig. 3.1(a) illustrates an example of the bipartite network. Specifically there are

four developers denoted by four vertices, A, B, C and D. Five bugs are involved whom

are represented by five vertices, 1, 2, 3, 4 and 5. Developer vertices and bug vertices

form two disjoint sets of vertices. All the edges are between the two disjoint sets and

never within a set. For example, an edge B2 indicates a data entry that B changes the

status of bug 2.

The bipartite graph is undirected as the direction is meaningless due to the different

logic nature of two disjoint sets. The bipartite network could be converted to a weighted

network. Note in Fig. 3.1(a) there are two edges between Developer A and Bug 1.

Those two edges represent two data entries containing A and 1. This is the same

scenario regarding the duplicated bug-developer pairs that we have demonstrated in Table

3.1. If there exists more than one edge connecting two vertices, the network is called a

multi network or multi-graph. To ease the analysis of the multi network, we combine all

the edges connecting a pair of vertices and assign the number of edges combined to be

the weight of that combined edge. Thus the resulting network becomes an undirected,

weighted bipartite network as shown in Fig. 3.1(b). This graph represents the scenario

that duplicated bug-developer pairs are perceived.

As explained above, we are more interested at whether a specific bug and a specific

developer are related than how strongly that pair of entities is related. We then can

ignore the duplicated bug-developer pairs observed in Fig. 3.1(a). Namely we can

www.manaraa.com

58

ignore the second edge connecting developer A and bug 1. The resulting graph is

shown in Fig. 3.1(c). It is an undirected, un-weighted bipartite network.

(a)

(b)

(c)

(d)

Fig. 3.1 Bug fixing network construction

(a): Developer-bug bipartite multi-network;

(b): Developer-bug bipartite weighted network;

(c): Developer-bug bipartite un-weighted network;

(d): Developer-developer collaboration un-weighted network

www.manaraa.com

59

To better understand the collaboration patterns among software developers, we

construct a developer-developer collaboration network out of the developer-bug bipartite

network. Again we denote a developer with a vertex. Then we define an edge

between a pair of vertices to be the collaborative relation between the two developers

represented by those two vertices. Specifically, if two developers have worked on the

same bug at least once, we would add an edge between those two developer vertices.

Fig. 3.1(d) is the developer-developer collaboration network extracted out of the

developer-bug bipartite network in Fig. 3.1(c). Note both Fig. 3.1(b) and (c) will yield

the same developer-developer collaboration network based on our definition. Our

definition only considers whether two developers have worked on the same bug or not.

The number of bugs that both developers have worked on together does not have any

impact on the resulting developer-developer collaboration network. To keep the

network construction logically simple, we choose Fig. 3.1(c) to extract the

developer-developer collaboration networks.

As shown in Fig. 3.1(a), both developers A and C have worked on bug 1. Thus

there should be an edge connecting developer A and developer C in Fig. 3.1(d). Based

on the same logic, the developers A, B and D have worked on bug 2. Thus developers

A, B, and D should be connected to each other in the developer-developer collaboration

network.

www.manaraa.com

60

The developer-developer collaboration network we construct is un-directed. At

this stage, we do not consider the roles of developers, e.g. who is in charge in the

bug-fixing process. Thus the developer-developer collaboration network does not carry

the information such like assign-to, which implies that the edges are undirected.

In addition, we ignore the weight in the developer-developer collaboration network.

Note in Fig. 3.1(c), the fact that developers A and D have worked on bug 2 adds an edge

between A and D in Fig. 3.1(d). Moreover, A and D have also worked on bug 3

together which indicates another edge should be added to connect those two developers.

However, in this research work, we are more interested to study whether two developers

have collaborated rather than how closely they have collaborated. Therefore, we

intentionally ignore the weight of the developer-developer collaboration network

(Newman 2004).

Some data edges in the developer-bug network do not play any role in the

developer-developer collaboration network. For example, in Fig. 3.1(c), developer A

has worked on bug 5, and developer C has worked on bug 4. Since they are the only

developers who have worked on those two bugs independently, there is no collaborative

work among developers. Therefore those two data entries do not change anything in

Fig. 3.1(d).

Lastly, we do not consider self-loops in the developer-developer collaboration

network. As shown in Fig. 3.1(a), developer A has two edges connecting bug 1. From

the network point of view, the developer A is collaborating with himself which implies a

www.manaraa.com

61

self-loop from vertex A to itself in Fig. 3.1(d). However the scenario that a developer

inputs more than one data entry in the bug-developer data set should not lead to the belief

that the developer is collaborating with himself. In order to keep our concentration on

the subject of developer collaborations, we ignore the self loops in Fig. 3.1(d). That is

another reason why we choose Fig. 3.1(c) instead of Fig. 3.1(b) to extract the

developer-developer collaboration networks.

In summary, we will analyze three networks for each one of the MediaWiki (Wiki

for short) and Gentoo data sets: developer-bug weighted bipartite networks,

developer-bug un-weighted bipartite networks, and developer-developer collaboration

networks. For each one of the bipartite networks, we will consider two scenarios: bug

side and developer side. We will discuss the detail of the two sides of a bipartite

network in the following sections.

3.5 Topological metrics

Table 3.3 reuses some notations defined in Table 2.2. Those notations are

redefined because, unlike Table 2.2, Table 3.3 defines the symbols that can be used for

bipartite networks.

Similar to Table 2.2, the degree of node i ,
i

k , is the number of edges connected to

that vertex even for bipartite networks. As claimed above, we will consider two

scenarios for each bipartite network from either the bug side or the developer side.

www.manaraa.com

62

From the bug side, each vertex denotes a bug, and thus
i

k is the number of developers

that the bug is associated with. On the other hand, from the developer side, each vertex

represents a developer. The value of
i

k is the number of bugs that the individual

developer has been involved in.

Table 3.3 Symbols of network measures for bipartite networks

Symbol Measure

i
k Degree of node i , i.e., the number of edges connected to the node

k

Average degree of all nodes. For bipartite networks, average degree

of all nodes in a disjoint vertex set.

()p k

The fraction of nodes in the network that have degree k , or

equivalently, the probability that a node chosen uniformly at random

has degree k

The average degree k is the arithmetic mean of the degree values of all the

vertices in the network set. For a bipartite network, the average degree k is the

arithmetic mean of the degree values of all the vertices in either one of the disjoint set of

the network. A developer-bug bipartite network has two average degree values, one

from the bug side, the other from the developer side. From the bug side, k is the

www.manaraa.com

63

average of degrees of all bugs. Based on the same logic, k is the average degree of all

developers from the developer side of the bipartite network.

Degree distribution is the distribution of ()p k which is the number of nodes in the

network that have degree k . Degree distribution is usually displayed by plotting

()p k against the sorted k values. For a bipartite network, ()p k is calculated

separately from either the bug side or the developer side.

3.6 Empirical findings

Leveraging the topological metrics described in the above section, we calculate the

topological characteristics for Wiki and Gentoo data sets. As described above, we

analyze three networks for each data set: (1) developer-bug bipartite weighted networks,

(2) developer-bug bipartite un-weighted networks, and (3) developer-developer

collaboration un-weighted networks. For the bipartite networks, we consider two

scenarios from either the bug side or the developer side.

By analyzing the above networks, we hope to discover some common properties

shared by both data sets. For example, as explained in Section 3.2, a small number of

developers are usually involved in a large number of bug fixing processes. We hope

that the “rich get richer” mechanism can be supported by the network degree

distributions. We also hope to reveal some insights of the bug and developer’s relations

by comparing the bug side and the developer side of the bipartite networks.

www.manaraa.com

64

Table 3.4 Bug fixing data degree information

Package Network
Side (If

Bipartite)

Number of

Vertices

Number of

Edges

Average

Degree

Wiki

Weighted

Bipartite

Bug 16,263 86,265 5.304

Developer 2,646 86,265 32.602

Un-weighted

Bipartite

Bug 16,263 35,656 2.192

Developer 2,646 35,656 13.475

Dev-Dev N/A 2,646 101,152 38.228

Gentoo

Weighted

Bipartite

Bug 218,387 1,232,735 5.645

Developer 20,322 1,232,735 60.660

Un-weighted

Bipartite

Bug 218,387 580,974 2.660

Developer 20,322 580,974 28.588

Dev-Dev N/A 20,322 2,360,860 116.172

The numerical results are displayed in Table 3.4. We use Wiki data set as the

example to explain the results. Gentoo data set should follow the same logics. In the

weighted bipartite network, the number of vertices from the bug side is 16,263. That

value indicates there are 16,263 bugs in the data set which matches the results in Table

3.2. The number of edges, 86,265 shows how many developers, duplications

acceptable, are associated with those bugs. Note the numbers of edges are the same for

www.manaraa.com

65

the bipartite networks from either the bug side or the developer side. That is

understandable if analyzing the examples shown at Fig. 3.1(b) and (c). The average

degrees from the bug side and the developer side are 5.304 and 32.602, respectively.

The intuition of those two numbers is that, on average, each bug needs about 5

developer’s entries to get fixed, and each developer is involved in over 32 bug fixing

entries. Note those numbers are for the weighted network meaning duplications of

bug-developer pairs are acceptable. If those duplications are ignored, the resulting

networks are un-weighted bipartite networks. The average degrees from the bug side

and the developer side are 2.192 and 13.475, respectively. That is, out of the 5.304

developer’s data entries for each bug, only 2.192 unique developers are involve for that

bug. Based on the same logic, each developer has input 32.602 bug data entries, with

13.475 unique bugs. The ratio is 5.304 / 2.192 = 32.602 / 13.475 = 2.419. That means,

on average, each developer needs to deal with the same bug 2.419 times before that bug

is fixed.

Based on the same logic, we calculate the topological measures for the Gentoo data

set. According to the values of the “Number of Vertices” and the “Number of Edges” in

Table 3.2, we can easily conclude that Gentoo’s bipartite networks are much larger in

size than Wiki’s networks. After carefully examining the results, we realize the average

degrees of those two data sets do not show significant difference from the bug side,

namely 5.304 vs. 5.645, and 2.192 vs. 2.660. However, the average degrees of the two

data sets are much different from the developer side, namely 32.602 vs. 60.660 and

www.manaraa.com

66

13.475 vs. 28.588. Gentoo’s average degrees from the developer side are about doubled

compared with Wiki’s for both weighted and un-weighted networks. The intuition

behind that interesting finding is even the size, and hence the complexity of the software

application increases, each bug’s complexity remains about the same. Thus it does not

take significantly more time for the developers to fix an individual bug. That intuition

leads to the observation that the average degree from the bug side remains about the same

regardless the size of the application. On the other hand, as the size of the application

increases, each developer needs to be involved in fixing more bugs. Therefore the

average degree from the developer side increases as the size of the application increases.

Lastly we examine the developer-developer collaboration networks. As we have

explained in the above section, the developer-developer collaboration networks we have

constructed are un-weighted, undirected, and simple (no self loops or multi edges)

networks. First observation that we can easily recognize is the developer-developer

collaboration networks have a lot more edges than the un-weighted bipartite networks,

namely 101,152 vs. 35,656 and 2,360,860 vs. 580,974. Note we construct the

developer-developer collaboration networks out of the un-weighted bipartite networks,

thus we have to use the un-weighted bipartite networks for the comparison instead of the

weighted bipartite networks. The explanation of the dramatic increase of the number of

edges is based on the so-called “developer cliques (Newman and Girvan 2004).” If a

number of developers have worked on the same bug, those developers will form a clique.

In a clique, every developer is connected to every other developer within that clique. If

www.manaraa.com

67

a clique is composed of N developers, that clique will yield (1) / 2N N − edges in the

resulting developer-developer collaboration network.

Our second observation regarding the developer-developer collaboration networks

is the average degree increases from 38.228 to 116.172 as the size of the network

increases. The insight is as the size and complexity of the software application grows,

each developer is likely to be involved in fixing more bugs. The observation is

intuitively consistent with software development practice.

Fig. 3.2 to Fig. 3.5 are the degree distributions of the bipartite networks: weighted

and un-weighted, from the bug side and from the developer side. In order to compare

the differences and the similarities between Wiki and Gentoo data sets, we plot the two

data sets on every one of the degree distribution graph.

Fig. 3.2 shows the degree distribution results for the bug-developer weighted

bipartite networks from the bug side. The majority middle parts of the both curves are

close to straight lines; hence possess semi-scale free properties. Both data sets, Wiki

and Gentoo, show noticeable dips at the very first points where the degree value 1k = .

That is to say that the number of bugs that have only one bug data entry is less than the

number of bugs that have two, or three data entries. After carefully examining the

source data, we realize this property is due to the nature and some special rules that the

bug fixing procedure caries. Specifically when a bug is found, a bug data entry with

“NEW” in the “Added” field will be input to the data set as shown in the example Table

3.1. After the bug is fixed, another data entry with “RESOLVED” in the “Added” field

www.manaraa.com

68

will be input to the data set. Therefore most bugs have at least two data entries in the

data sets which results in a limited number of bugs with only one data entry. Note those

two data entries, “NEW” and “RESOLVED,” that an individual bug has been involved in

may be entered by one developer. If duplications of bug-developer pairs are ignored,

the resulting degree distribution will show a different shape as shown in Fig. 3.3.

-2

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

Fig. 3.2 Degree distribution: bug-developer weighted bipartite networks from bug side

Fig. 3.2 also has a long hockey tail for large degree values which indicates that very

few bugs with significantly large number of data entries. That is understandable when

duplicated bug-developer pairs are allowed.

www.manaraa.com

69

-2

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

Fig. 3.3 Degree distribution: bug-developer un-weighted bipartite networks from bug side

Comparing Fig. 3.2 and Fig. 3.3 clearly shows the effects of the network weight.

Recall the weighted bipartite networks reflect the scenarios that the duplicated

bug-developer pairs are allowed. On the other hand, the un-weighted bipartite networks

ignore the bug-developer pair duplications. If the bug-developer pairs are ignored, the

dips shown in Fig. 3.2 is significantly reduced as shown in Fig. 3.3. As explained in the

paragraph above, an individual bug usually has at least two data entries, “NEW” and

“RESOLVED.” That is the reason that causes the dips in Fig. 3.2. However if both

data entries are entered by the same developer, by the definition of un-weighted bipartite

www.manaraa.com

70

networks, only one edge is considered for that specific bug. Therefore, the number of

bugs with only one data entry may not be necessarily limited. That is why the dips are

hardly recognizable in Fig. 3.3.

Moreover, because of the same reason, the degree values for bugs with very high

degrees are also reduced. Intuitively speaking, a complex bug may be associated with

many data entries but many of those data entries may be entered by a limited set of

developers. Thus the hockey tail in Fig. 3.3 is dramatically shortened compared with

Fig. 3.2. Therefore ignoring the duplications of bug-developer pairs makes the degree

distributions more scale free.

Fig. 3.4 and Fig. 3.5 are to show the bipartite networks degree distributions from

the developer side. Those two graphs describe developers’ involvements with bugs.

Both graphs show very strong scale free trends. For weighted networks, the head of the

curves have small dips for both data sets. On the other hand, Fig. 3.5, the un-weighted

networks do not have dips for both Wiki and Gentoo data sets. The difference on the

dips between those two figures can be explained easily by the duplicated bug-developer

pairs following the similar logics as shown in the paragraph above.

Unlike the graphs from the bug side (especially Fig. 3.3), both Fig. 3.4 and Fig. 3.5

have long hockey tails. The long hockey tails imply that there exist a small set of

developers who are heavily involved in fixing a large number of bugs. Those

developers can be considered as the technical leads in the bug fixing process.

www.manaraa.com

71

From Fig. 3.2 to Fig. 3.5, we observe a common characteristic that occurs in all

four graphs: both Wiki and Gentoo networks have similar shapes of degree distributions.

Furthermore Gentoo’s graphs are always above Wiki’s graphs, and they are always in

parallel. The two applications are with quite different sizes and in different domains.

The similar degree distributions shared between them seem to suggest that there exist

common underlying characteristics in the bug fixing process shared by open source

software systems across application size and domain.

-2

0

2

4

6

8

10

12

14

0 5 10 15 20
Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

Fig. 3.4 Degree distribution: bug-developer weighted bipartite networks from developer

side

www.manaraa.com

72

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18
Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

Fig. 3.5 Degree distribution: bug-developer un-weighted bipartite networks from

developer side

Fig. 3.6 shows the degree distributions of developer-developer collaboration

un-weighted networks. Again, both the Wiki and Gentoo data sets exhibit similar

degree distribution curves. The major parts of the two curves form straight lines which

indicate both distributions are scale free. The scale free property implies that the more

popular a developer is, the more likely other developers are to collaborate with that

individual developer. The scale free property makes intuitive sense in software

engineering.

www.manaraa.com

73

Both curves in Fig. 3.6 have heavy hockey tails that imply that there exists a small

set of developers with extremely high collaborative connections with other developers.

Those developers are usually leaders in the bug fixing process which is consistent with

our observations in the previous paragraphs. At the beginning of the two curves, small

dips are observed for both data sets. The dips are corresponding to the degree value

1k = . The dips suggest that the number of developers that have only one connection to

another developer is limited. The observation can be intuitively explained by the fact

that developers are usually working with at least two other developers.

-2

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Log k

L
o

g
 p

(k
)

Wiki Dev-Dev

Gentoo Dev-Dev

Fig. 3.6 Degree distribution: developer-developer collaboration un-weighted networks

www.manaraa.com

74

3.7 Conclusions and future study

The software developer collaboration is an important factor in software

development process. The quality of the developer collaboration has a direct impact on

the overall software development performance, and thus to the quality of the final

software product. In our study, we propose a framework to analyze the software

developer’s collaborative relations by leveraging network theory. Specifically we

choose the bug fixing data sets for two real software applications, MediaWiki and

Gentoo, to perform the empirical analysis. Two developers are defined as collaborated

if they have worked on at least one bug together. Based on that definition, we construct

the bug-developer bipartite networks and the developer-developer collaboration networks

for those two bug data sets. We then calculate several topological measures for those

constructed networks. Our empirical results indicate that all networks possess scale free

properties. For the bipartite networks, we find and explain the average degree from the

developer side is related to the size of the open source software package. On the other

hand, the average degree from the bug side is unrelated to the software package size.

Our findings and framework can be leveraged as the infrastructure for later research in

the developer collaboration field.

Some limitations of our empirical research lead to some interesting follow-ups in

the near future. First of all, the developer-developer collaboration networks that we

constructed are un-directed. We do not consider the roles that each developer plays in

www.manaraa.com

75

fixing an individual bug. In the next step of our research, we may consider the

heterogeneous roles that developers play for each bug. For example, a developer may

assign a bug fixing task to another developer which implies the first developer is the

leader of the team and second is the follower. The detailed relation between two

developers may be revealed by the timestamp of the bug data entry or the keywords in

“Added” and “Removed” fields as shown in Table 3.1. With that detailed relation

information, we can construct directed developer-developer collaboration networks where

the direction indicates the leadership between those two developers. The directed nature

of relations among developers differentiates the bug-fixing developer collaboration from

many other collaborative networks, such as scientific collaborations (Newman 2001) and

movie actor collaborations (Watts and Strogatz 1998), where relations between two

connected people, e.g. scientific scholars or movie actors, do not carry strong directional

information.

Second possible follow-up research may extend the current research by considering

the weight of the developer-developer collaboration networks. As explained in previous

sections, we ignore the weight of the collaboration networks which means we consider

whether two developers have collaborated rather than how closely those two developers

have collaborated. In reality if two developers have worked together on multiple bugs,

the intensive collaborative relation between the two developers should be valued. In the

future study, we may extend the network construction by incorporating

developer-developer collaboration weight. We hope the more detailed consideration in

www.manaraa.com

76

the network construction will result in more interesting findings to researchers and

software practitioners.

www.manaraa.com

77

CHAPTER 4 COMPARISON OF TWO CLUSTERING COEFFICIENT

DEFINITIONS

4.1 Introduction

Complex network analysis has gained more and more attention recently. It is

widely adopted in analyzing real world complex systems including software systems

(Albert and Barabasi 2002; Newman 2003; Potanin, Noble et al. 2005). One of the most

useful topological measures in the network analysis is the clustering coefficient.

Clustering coefficient measures the extent to which being a neighbor is a transitive

property. Clustering coefficient has two commonly used definitions (Watts and Strogatz

1998; Newman 2001; Newman, Watts et al. 2002; Newman 2003). The first definition

is proposed by Watts and Strogatz, and the second is by Newman. Those two

definitions share some common considerations and, at the same time, have their own

unique angles in measuring the clustering circumstances. However, very few attempts

have been proposed in order to compare those two definitions. Most researchers just

adopt one of them based on their own needs when conduct their research work. This

chapter intends to fill the gap by proposing an analytical comparison between the two

clustering coefficient definitions invented by Watts-Strogatz and Newman, respectively.

The comparison is performed by analytical derivations showing the mathematical

relations between those two definitions. Some numeric properties of the two definitions

www.manaraa.com

78

are presented. Lastly a simulated network example is leveraged to show the impact

factors of the clustering coefficient values based on those two definitions. Our research

can be potentially leveraged by software practitioners to analyze software product

structure, development processes, and engineer collaborations using complex networks.

The rest of the chapter is organized as follows. We first introduce some

background information in Section 2. In Section 3, we briefly explain the topological

metrics that we will be using in this chapter. Section 4 presents the numeric analysis

and the derived formulas of the two clustering coefficient definitions. In Section 5, we

introduce several numeric properties of those two definitions including the impact factors

of the clustering values for each definition. Finally, we conclude the chapter with a

summary of contributions in Section 7.

4.2 Background

As an important topological measure in graph theory (Tutte 1984), clustering

coefficient measures the extent to which being a neighbor is a transitive property

(Eggemann and Noble 2011). Clustering coefficient has two commonly used definitions

(Watts and Strogatz 1998; Newman 2003). We reuse the clustering coefficient

definitions and descriptions in Section 2.5.6 to perform our analysis. Equations 2.1 to

2.4 will be reused as the starting point to present our derivations.

www.manaraa.com

79

4.3 Topological metrics introduction

We reuse the notations in Table 2.2 to perform the analysis for this chapter.

Moreover, we present some additional symbols in Table 4.1 that we will be using for the

rest of this chapter. As explained above, the networks that I analyze are un-directed and

un-weighted networks. The networks are simple networks meaning no self loops or

multiple edges connecting two vertices are allowed.

0N is the number of the vertices in the network which is commonly referred to as

the size of the network. Unlike in Table 2.2, in Table 4.1 N is the number of vertices

whose degrees are greater than 1. N is useful when we calculate the clustering

coefficient. On the other hand, 0N is not directly usable for calculating the clustering

coefficient because the vertices with degree 1 do not have any effect on the clustering

coefficient value. The variables
i

k and
i

a have the same meanings as in the previous

sections. In order to study the detailed information of an individual vertex’ connections,

we define two additional variables, ()i

a
T and ()i

pT . ()i

a
T is the number of triangles

around vertex i . A triangle is a group of three vertices that connect to each other.

()i

pT is the number of triples centered at vertex i . A triple centered at vertex i is a

group of three vertices that vertex i is connected to the other two vertices.
a

T and
p

T

are aggregated variables that count the total numbers of triangles and triples, respectively,

in the entire network. ()i

WS
C is the clustering coefficient in the Watts-Strogatz definition

for vertex i that is connected to at least two other vertices. Finally
WS

C and
NW

C

www.manaraa.com

80

are the dependent variables that are the clustering coefficient in the Watts-Strogatz

definition and Newman definition, respectively, for the entire network.

Table 4.1 Symbols of network measures

Symbol Measure

0N Number of vertices in the network, referred to as the network size

N Number of vertices in the network whose degrees are greater than 1

i
k Degree of vertex i , i.e., the number of edges connected to the vertex

i
a Number of edges among the neighbors of vertex i

()i

a
T

Number of triangles around vertex i . A triangle is a group of three

vertices that connect to each other.

()i

pT

Number of triples centered at vertex i . A triple means a single vertex

connected to two other vertices.

a
T Total number of triangles in the network

p
T Total number of triples in the network

()i

WS
C

Clustering coefficient in the Watts-Strogatz definition for vertex i with

the degree value greater than 1

WS
C Clustering coefficient in the Watts-Strogatz definition for the network

NW
C Clustering coefficient in the Newman definition for the network

www.manaraa.com

81

4.4 Numeric analysis

Using the symbols that we defined in Table 4.1, we present the formulas to

calculate
WS

C and
NW

C . Based on equations 2.1 to 2.4, we present
WS

C and
NW

C ’s

calculations in the following three equations.

()

(1) / 2

i i
WS

i i

a
C

k k
=

−
 (4.1)

()

1

1 N
i

WS WS

i

C C
N =

= ∑ (4.2)

3 a
NW

p

T
C

T

×
= (4.3)

Based on the definition,
i

a is the number of edges among the neighbors of vertex

i . Since every neighbor is connected to vertex i by definition, every edge among

vertex i ’s neighbors corresponds to a triangle around vertex i . On the other hand,

every triangle around vertex i must correspond to an edge connecting a pair of vertex

i ’s neighbors. Thus,

()i

a i
T a= (4.4)

()i

pT is the number of triples centered at vertex i . A triple centered at vertex i

is a group of three vertices that vertex i is connected to the other two vertices. Every

triple centered at vertex i corresponds to an unordered pair of vertex i ’s neighbors.

Thus the total number of triples centered at vertex i is the total number of different

combinations of vertex i ’s un-ordered neighbors which is (1) / 2
i i

k k − .

() (1) / 2i

p i iT k k= − (4.5)

www.manaraa.com

82

Implanting equations 4.4 and 4.5 to equation 4.1 leads to a new formula to calculate

()i

WS
C and then

WS
C .

()
()

()

i
i a

WS i

p

T
C

T
= (4.6)

()

()
1

1
iN

a
WS i

i p

T
C

N T=

= ∑ (4.7)

We now consider the formula for
NW

C . The following two equations are quite

straightforward.
a

T and
p

T are aggregated variables of ()i

a
T and ()i

pT , respectively.

Since every triangle is counted three times when considering each vertex i , the total

number of triangles in the network,
a

T , should be the summation of ()i

a
T divided by 3.

Moreover () () 0i i

a pT T= = , if 01, 1,..
i

k i N≤ ∀ = . Thus,

0

() ()

1 1

1 1

3 3

N N
i i

a a a

i i

T T T
= =

= =∑ ∑ (4.8)

0

() ()

1 1

N N
i i

p p p

i i

T T T
= =

= =∑ ∑ (4.9)

We then implant equations 4.8 and 4.9 to equation 4.3, and obtain the formula for

NW
C as shown in equation 4.10.

()

1

()

1

N
i

a

i
NW N

i

p

i

T

C

T

=

=

=

∑

∑
 (4.10)

We will leverage equations 4.7 and 4.10 to compare the two clustering coefficient

definitions from now on.

www.manaraa.com

83

Starting from equation 4.7,
() ()

() ()
1

1
Mean of

i iN
a a

WS i i
i p p

T T
C

N T T=

= =∑ . Starting from

equation 4.10,

()

()

1

()
()

1

1

Mean of

1 Mean of

N
i

ia

i a
NW N i

i p
p

i

T
TN

C
T

T
N

=

=

= =

∑

∑
. Thus we can say

WS
C is the mean of

the raio
()

()

i

a

i

p

T

T
, and

NW
C is the raio of the mean of ()i

a
T and the mean of ()i

pT .

4.5 Numeric properties

Lower bound. Since () 0, 1,2,...i

a
T i N≥ ∀ = , then both

WS
C and

NW
C are

non-negative. Thus the minimum of the values for both
WS

C and
NW

C variables may

be zero. The minimum is zero if and only if () 0, 1, 2,...i

a
T i N= ∀ = . A formal

description is listed below.

0
WS

C ≥

0
NW

C ≥

()0 0, 1, 2,...i

WS NW a
C C T i N= = ⇔ = ∀ =

In order to satisfy () 0, 1,2,...i

a
T i N≥ ∀ = , the network can be a tree where no cycle

exists, or a cycle with more than 3 vertices, etc. Fig. 4.1 shows an example for a tree

with 8 vertices and a cycle with 5 vertices, respectively. In conclusion the lower bound

of
WS

C and
NW

C is met when there does not exist three vertices that are connected to

each other in the network.

www.manaraa.com

84

(a)

(b)

Fig. 4.1 Examples of both
WS

C and
NW

C are 0

(a): Tree with 8 vertices; (b): Cycle with 5 vertices.

Upper bound. Since () () , 1,2,...i i

a pT T i N≤ ∀ = , then both
WS

C and
NW

C are less

than or equal to 1. Thus the maximum of the values for both
WS

C and
NW

C variables

may be 1. The maximum is 1 if and only if () () , 1,2,...i i

a pT T i N= ∀ = . A formal

description is listed below.

1
WS

C ≤

1
NW

C ≤

() ()1 , 1, 2,...i i

WS NW a pC C T T i N= = ⇔ = ∀ =

In order to satisfy () () , 1,2,...i i

a pT T i N= ∀ = , the network has to be a complete graph

where every vertex is connected to every other vertices. Thus
WS

C and
NW

C values

meet the upper bound only when the network is a complete graph. Fig. 4.2 shows two

complete graph examples with 5 vertices and with 7 vertices, respectively.

www.manaraa.com

85

(a)

(b)

Fig. 4.2 Examples of both
WS

C and
NW

C are 1

(a): Complete graph with 5 vertices; (b): Complete graph with 7 vertices.

Equality. We are interested to explore the conditions where
WS NW

C C= . If

() () , , 1,2,...i j

p pT T i j N= ∀ = , then

()
()

() (1)
1 1

1 1
iN N

ia
WS ai

i ip p

T
C T

N T N T= =

= =
⋅

∑ ∑

() ()

()1 1

(1)
() (1) 1

1 1

1

N N
i i

a a N
ii i

NW a WSN N
i ip

p p

i i

T T

C T C
N T

T T

= =

=

= =

= = = =
⋅

∑ ∑
∑

∑ ∑
.

Since () (1) / 2i

p i iT k k= − , thus () () , , 1,2,...i j

p pT T i j N= ∀ = is equivalent to

, , 1, 2,...
i j

k k i j N= ∀ = . Therefore,

, , 1,2,...
WS NW i j

C C k k i j N= ⇐ = ∀ =

www.manaraa.com

86

Note , , 1, 2,...
i j

k k i j N= ∀ = is the sufficient condition but not a necessary

condition. That is to say, if the degrees of all vertices in a network are the same, then

WS NW
C C= .

Fig. 4.3 shows two graph examples that all vertices in the graph have the same

degrees. Fig. 4.3(a) is an octahedron with 6 vertices. Each vertex has a degree 4 and

each vertex has 4 triangles around it. Thus
4

2 / 3
4(4 1) / 2

WS NW
C C= = =

−
.

Fig. 4.3(b) is a cube with 8 vertices, each of which has a degree 3. Note each

vertex has 0 triangle around it which results in 0
WS NW

C C= = . This example not only

exhibits the equality between
WS

C and
NW

C , but also fits in the lower bound scenario as

well.

(a)

(b)

Fig. 4.3 Examples of
WS NW

C C=

(a): Octahedron; (b): Cube.

www.manaraa.com

87

Log k vs. Log count

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

Log k

L
o

g
 c

o
u

n
t

Fig. 4.4 Log degree k vs. log count p(k)

Impact of vertices with large degrees. Recent research findings show that lots

of real world complex networks possess the scale-free properties (Newman and Watts

1999; Albert and Barabasi 2000; Albert and Barabasi 2000; Goh, Kahng et al. 2001; Goh,

Kahng et al. 2001; Cohen, Ben-Avraham et al. 2002; Goh, Oh et al. 2002; Schwartz,

Cohen et al. 2002; Cohen and Havlin 2003; Goh, Lee et al. 2003; Kim, Goh et al. 2003;

Vazquez, Boguna et al. 2003) whose degree distributions follow the power law.

Specifically the logarithmic values of degrees and the logarithmic values of the number

www.manaraa.com

88

of vertices with the same degrees form a decreasing straight line. Intuitively speaking,

there are very few vertices with very large degrees, and most vertices have low degrees.

Fig. 4.4 presents a simulated example of the scale-free network.

We leverage the above simulated network to further compare the two clustering

coefficient definitions by Watts-Strogatz and Newman. Table 4.2 lists some calculated

results derived from the degree distribution. The values of Log k and Log Count form a

decreasing straight line that is presented in Fig. 4.4. From the logarithmic values, we

can compute k and count values. The last column, k(k-1)/2 * count, will be used later to

analyze
NW

C .

Table 4.2 Simulated degree distribution

Log k Log Count k Count k(k-1)/2 * Count

0 15 1 32,768 0

2 12 4 4,096 24,576

4 9 16 512 61,440

6 6 64 64 129,024

8 3 256 8 261,120

10 0 1,024 1 523,776

www.manaraa.com

89

From the previous section, we know
() ()

() ()
1

1
Mean of

i iN
a a

WS i i
i p p

T T
C

N T T=

= =∑ . The value

of
WS

C is an average of ratio
()

()

i

a

i

p

T

T
. And

()

()
0 1, 1,..

i

a

i

p

T
i N

T
≤ ≤ ∀ = , the values of

()

()

i

a

i

p

T

T

are within a limited range from 0 to 1. If we assume the vertices with the same degrees

have the similar
i

a values, then the value of
WS

C is largely depends on the majority of

vertices who have the same degree values. Specifically, there are 32,768 vertices with

the same degree 1. Those vertices do not have any impact on the clustering coefficient

based on our definition, so that we can simply ignore those vertices. There are 4,096

vertices with degree 4. Those 4,096 vertices will yield a dominating factor to the overall

value of
WS

C since
WS

C is the average of the 4,681 vertices whose degrees are greater

than 1. On the other hand, although the one vertex with the degree 1024 is the most

“popular” vertex of the network, its ()i

WS
C only accounts for 1/4681 to the overall

WS
C

value. The impact of the popular vertices is smothered by that of the un-popular

vertices which are dominating by the vertex count.

However
NW

C is totally different from
WS

C in that the few popular vertices are

the dominating factors to the final value of
NW

C . Equation 4.10 states

()

1

()

1

N
i

a

i
NW N

i

p

i

T

C

T

=

=

=

∑

∑
.

Let us consider ()i

pT whose value is (1) / 2
i i

k k − per equation 4.5. To analyze the

impact of the popular and un-popular vertices to the mean of ()i

pT , we aggregate the

impact of ()i

pT for vertices who have the same degree values. The last column in Table

www.manaraa.com

90

4.2 indicates which set of vertices has the dominating factor. Although the un-popular

vertices, with degree 4, have the count advantage (count equals 4,096), the overall

summation of ()i

pT for the un-popular vertices is only 24,576. On the other hand, the

one popular vertex with degree 1,024 has a huge impact since its (1) / 2
i i

k k − value is

523,776. In the overall ()

1

N
i

p

i

T
=

∑ value, the one popular vertex has a dominating factor,

and the 4,096 unpopular vertices do not play an important role. Fig. 4.5 plots the degree

k versus k(k-1)/2 * count.

 Degree Effect

0100000200000300000400000500000600000

0 200 400 600 800 1000 1200k
k(k-1)/2 * cou
nt

Fig. 4.5 Degree effect: degree k vs. k(k-1)/2 * count

www.manaraa.com

91

In conclusion the two clustering coefficient definitions,
WS

C and
NW

C , has

different impact factors. The value of
WS

C is dominated by the un-popular vertices

which have low degree values, and usually the vertex count advantage. The few popular

vertices with extremely high degrees do not have much impact on
WS

C . On the

contrary, those few popular vertices play the most important role in calculating
NW

C .

The low-degree vertices are not as important as the few extremely popular vertices.

4.6 Conclusions

Network analysis becomes an important method to study complex systems, and the

clustering coefficient remains one of the most useful measures in examining network

characteristics. This chapter aims to provide an analytical comparison between two

widely adopted clustering coefficient definitions,
WS

C and
NW

C , proposed by

Watts-Strogatz and Newman, respectively. Mathematical derivations are presented to

compare the similarities and the differences between those two definitions. Our findings

show that the two definitions both depend on ()i

a
T and ()i

pT , the number of triangles and

triples, respectively, around vertex i . The difference between those two definitions lies

in that
WS

C is the mean of the ratio ()i

a
T and ()i

pT , and
NW

C is the ratio of the two

means of ()i

a
T and ()i

pT . We also examine the lower bounds and upper bounds of those

two definitions, and the conditions to meet those extreme bounds. Our further analysis

shows the impact factors of
WS

C and
NW

C values. Using a simulated network which is

www.manaraa.com

92

scale-free, we find that the extremely popular vertices have little impact on
WS

C due to

the limited number of those popular vertices. Whereas those popular vertices are the

dominating factors in determining the value of
NW

C .

Our research findings show detailed properties of the two clustering coefficient

definitions,
WS

C and
NW

C . It provides researchers more insights when conducting

network analysis research. Our findings provide the guidelines on which clustering

coefficient definition should be used when analyzing a network. Moreover our results

give researchers usable hints when a random network model is needed to explain the

topological measures found in real world complex systems. Specifically in software

engineering, software practitioners can leverage our research results to analyze complex

software products, engineer collaborations, and product development processes if

complex networks are chosen to conduct the analysis.

www.manaraa.com

93

CHAPTER 5 MODELING DEVELOPMENT PROCESS OF COMPLEX

SOFTWARE PRODUCTS

5.1 Introduction

As the development expenses of software products increases dramatically over the

years, more and more software engineering practitioners are motivated to discover the

optimal or semi-optimal software development patterns which can assure a good quality

software product in the end (Jacobson, Booch et al. 1999; Sarkar, Kak et al. 2008;

Chhabra and Gupta 2010; Eichinger, Kramer et al. 2010; Ma, He et al. 2010). A good

software development pattern can save a great deal of resource waste during the

development process, and significantly reduce the risk of reworking or overhauling a

developed software product (Rine and Sonnemann 1998; Frakes and Succi 2001). Since

most software practitioners are overwhelmingly result driven (Sarkar, Kak et al. 2008;

Shin, Meneely et al. 2011; Taherkhani, Korhonen et al. 2011), the final software products

remain the major or, in some cases, the only focal point in the software lifecycle which

results in the lack of data and effort for software development analysis. Very little

research or analysis effort has been performed in exploring the insight of the software

development process (Cimitile and Decarlini 1991; Jacobson, Booch et al. 1999).

Since its proposal by Erdos and Renyi (Erdos and Renyi 1959) (ER) in 1959,

random graph theory has been applied to the study of complex systems across a wide

www.manaraa.com

94

variety of domains (Albert and Barabasi 2002; Newman 2003; Goodreau, Kitts et al.

2009; Durrett 2010; Gondal 2011; Simpson, Hayasaka et al. 2011). Despite this breadth

of analysis, however, very few studies (e.g., (Potanin, Noble et al. 2005)) have sought to

use this framework to analyze software systems. Very recently, researchers have started

to analyze software systems from the perspective of complex networks (Potanin, Noble et

al. 2005), but the preliminary studies reported in the literature so far have been limited to

observations of a restricted set of topological measures and do not provide further

explanations of the formation and evolution of software structures yet. These few

existing studies are limited as they tend to be purely descriptive.

Our research presented in this chapter explicitly takes into account the particular

characteristics of software systems and strive to better explain the development and the

resulting structures of software systems. Specifically we revisit the function

dependency networks extracted from the five widely-adopted C-based open source

software packages as described in Chapter 2. By leveraging several network topological

measures from Chapter 2, we reuse those common characteristics that are shared by those

real world software packages. Driven by some fundamental incentives in the software

engineering field and in network growth analysis (Krapivsky, Redner et al. 2000; Jin,

Girvan et al. 2001; Milo, Shen-Orr et al. 2002; Goh, Oh et al. 2003; Milo, Itzkovitz et al.

2004), and incorporating the analytical results of Chapter 4, e.g. the impact factors of the

clustering coefficient, we propose a two-phase network growth model to simulate the

development process of the software products. Our analysis shows that our model can

www.manaraa.com

95

successfully explain all the characteristics that are obtained from the real world software

packages. To the best of our knowledge, our model is the only one that can explain all

those characteristics. We then conclude that our model can be a reasonable explanation

of the software product formation and development process.

The rest of the chapter is organized as follows. We first introduce some

background information in Section 1. In Section 2, we perform an empirical analysis of

five widely-adopted open-source software packages by exhibiting their topological

measures. Section 3 shows the fitting of some existing models. We present our

two-phase network growth in Section 4 in detail. Specially we explain the rational

behind our model, and present our model with textual description and a formal

mathematical description. In Section 5, we compute the topological measures of the

networks that are generated by following our network growth model. In additional to

the analytical results, we also perform the numeric study in Section 6 to show some

measures that are not readily calculated by analytical approach. Finally, we conclude

the chapter with a summary of contributions and a discussion of possible future research

directions in Section 7.

5.2 An empirical study of open source packages

An empirical analysis is performed to identify the topological properties of real

software structures. To perform our empirical study, we have downloaded the source

www.manaraa.com

96

code of five widely-adopted open-source software packages: OpenSSH (a secure

communication client), Httpd (Apache Web server), Gaim (a multi-protocol instant

messaging client), MySQL (a database management system), and GIMP (GNU Image

Manipulation Program). All of the packages are using C as the programming language.

These applications vary widely in terms of the size of the package source code, allowing

us to gain insights into the design of software systems across a range of sizes and

complexity.

We define each node to be a function within a source file because functions are the

smallest self-contained operational component of software systems. An edge between

two vertices corresponds to a function call relationship between the functions represented

by the vertices. As is common in complex systems analysis (Barabasi and Albert 1999;

Ravasz and Barabasi 2003), at this stage of our inquiry we consider the edges to be

weightless and directionless. Using the above definitions, we extract the function call

graphs from the software source code, and compute the topological measures of each

graph. The graph extraction is accomplished by using Imagix 4D (Murphy, Notkin et al.

1998), a commercial application intended to help developers model and analyze complex

software systems. After constructing the function dependency networks for the real

world software packages, we aggregate the atomic inter-function relationships to the

system level topological metrics. The topological measures are computed by a

home-grown Java-based application. The results are presented in Fig. 5.1 and Table 5.1.

www.manaraa.com

97

.

-2

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

Log Degree (k)

L
o
g

F
r
e
q
u
e
n
c
y

(
N
k
)

OpenSSH-4.0p1

Httpd-2.0.54

Gaim-1.3.1

MySql-4.1.12

Gimp-2.2.8

Fig. 5.1 Degree distributions of five software function dependency networks (Logarithm

of base two is used throughout this chapter).

Four properties are observed in our empirical study. 1) Figure 5.1 shows the

degree distributions of the function call graphs have scale-free property. 2) The

distributions of the five graphs have similar slopes, and thus are parallel. The intercept

increases on the Log Frequency axis as the network size increases. 3) The clustering

using Watts-Strogatz definition remains invariant as the network sizes increases. 4) The

clustering using Newman definition also remains invariant of the network sizes.

www.manaraa.com

98

Table 5.1 Topological measures of five function dependency networks

Network N M k
(1)

C
(2)

C
Rand

C

OpenSSH 1,221 5,436 8.90 0.160 0.038 0.00729

Httpd 2,061 5,005 4.86 0.108 0.028 0.00236

Gaim 5,181 15,009 5.79 0.084 0.030 0.00112

MySql 5,024 19,745 7.86 0.158 0.034 0.00156

GIMP 14,380 45,224 6.29 0.132 0.023 0.00044

5.3 Review of existing models

We examine whether existing network models can closely reproduce the observed

topological features of the function dependency networks and thus provide possible

explanations for the formation and evolution of such networks. A large number of

network models exist in the literature. Having observed inadmissible gaps between the

Erdős-Rényi random graph model (Erdos and Renyi 1959; Erdos and Renyi 1960; Erdos

and Renyi 1961) and the observed networks, we now focus on two additional influential

models we feel most relevant to this study, i.e., the Barabási-Albert (BA) network growth

model (Barabasi and Albert 1999) and the Ravasz-Barabási (RB) hierarchical network

model (Ravasz and Barabasi 2003).

In the BA model, a network starts with a small set of nodes and continuously

expands with the addition of new nodes, which are attached preferentially to existing

www.manaraa.com

99

nodes that are already well connected. Specifically, the probability that an existing node

receives a new edge is proportional to the degree of the node. The resulting network is

scale-free and has a power-law degree distribution with a fixed exponent. However, the

clustering coefficient decreases as the network grows (Albert and Barabasi 2002).

Using the Watts-Strogatz definition, it follows approximately a power law (1) 0.75~C N
−

and tends to zero in the limit of large network size. This apparently disagrees with the

observations on the software function dependency networks.

In the RB model, small groups of nodes organize in a hierarchical manner into

increasingly larger groups. During the network growth, sub-networks are replicated.

A particular node serves as the hub of the network and is connected to all newly

incorporated sub-networks. Ravasz and Barabási have demonstrated that this model

approximately retains the scale-free property (Ravasz and Barabasi 2003). The RB

model also leads to invariant clustering coefficient in the Watts-Strogatz definition (Watts

and Strogatz 1998). However, the clustering coefficient in the Newman definition

decreases substantially as network size increases (Newman 2003) (see Fig. 5.2). Hence,

this model is also inadequate in explaining software function dependency networks. In

the next section, we propose a new model, which extends the RB model and leads to

invariant clustering coefficient in either of the two definitions.

www.manaraa.com

100

-10

-8

-6

-4

-2

0

0 5 10 15 20

Log N

Log C(1)

Log C(2)

Fig. 5.2 Clustering coefficients of networks generated by the RB model

5.4 Proposed two-phase network growth model

In our proposed model, network growth experiences two phases. In the first

phase, the network expands following the RB hierarchical network model. When the

size of the network reaches a particular threshold, the network growth switches to the

second phase, in which the sub-networks are replicated and linked to each other with

sparse connections. Major differences of the second phase from the first one are that the

inter-sub-network connections are sparse and that there is no particular node serving as a

hub to all sub-networks. In contrast to generic network models, such as the BA model

and the RB model, our proposed model is specifically motivated by software

development principals. We first briefly discuss the rationales underlying the model and

then present the model itself both descriptively and formally.

www.manaraa.com

101

5.4.1 Rationales

Most scale-free networks that have been studied in the literature (e.g. the

World-Wide-Web, the Internet, citation networks, and social networks) are gradually

built up over time. The size of the growth at each step is relatively trivial compared to

the size of the existing network. Connections between new growth and the existing

network are not necessarily sparse. The network growth mechanism does not change as

the network grows. Most existing network models that generate scale-free networks

assume a similar growth process.

We posit that the development of software systems, however, follows a different

process, while the resulting function dependency networks also possess the scale-free

property. Regarded as a unique practice of complex system generations, software

development has its own philosophy. Some generally-advocated software development

principals include divide-and-conquer, modularization, high intra-module cohesion, and

low inter-module coupling. A large software system is usually divided into several

self-contained sub-systems of manageable sizes. The sub-systems, often referred to as

modules (Parnas 1972; Parnas 1972), can be developed by one or a few highly-interactive

engineering teams. Due to the high level of interaction within the teams, the structures

of the modules are highly cohesive, with dense intra-module connections among

functional units. On the other hand, to achieve encapsulation and independence of

modules, it is desired to keep the inter-module connections sparse so that any change

www.manaraa.com

102

made on a certain module will have minimal impact on others (Dhama 1995; Tonella

2001; Leino and Nelson 2002; Darcy, Kemerer et al. 2005). As software engineers

apply these principals in practice, the structures of the software systems they develop will

have some special characteristics, which can be reflected by topological measures of the

corresponding function dependency networks.

We can also look at software packages from a structure angle. Viewed from the

point of high structural levels, software packages are amalgamations of several

semi-independent modules, which share similar topological characteristics due to

common development practices. The connections among modules occur intermittently

and are sparse for the purpose of improving manageability, modularity, and extensibility

by maintaining low coupling between functionally distinct modules (Dhama 1995;

Tonella 2001; Darcy, Kemerer et al. 2005). There should not be a single function or

module that serves as a hub of the entire package in order to avoid system crashes caused

by single-point failures (Kennel, Perry et al. 1989; Albert, Jeong et al. 2000; Callaway,

Newman et al. 2000; Li, Zou et al. 2004; Hu, Guo et al. 2005). On the other hand, at a

much detailed structural level, the functions within a module are well connected to

improve intra-module cohesion. There are very likely one or a few largely connected

functions serving as local hubs of the module to pass on data and commands. Therefore,

we propose that there are two different mechanisms that govern the growth of a software

function dependency network at different levels depending on the size of the network.

www.manaraa.com

103

5.4.2 Model description

We first define two parameters: n , the size of the initial network, and T , the

number of steps that the network grows before the growth mechanism migrates from

phase one to phase two. It is plausible to assume that 3n ≥ and 1T ≥ for a large

software system.

Phase one

The first phase of our model follows the same rules defined in the RB hierarchical

network model (Ravasz and Barabasi 2003). At the starting point, referred to as step

one, the network is a small cluster with n nodes where each node is connected to every

other node. Of the n nodes, one is defined as the “hub” and the others are called

“peripherals”. The “hub” of the initial cluster is also referred to as the “center” of the

network. Throughout phase one, there is only one center.

At step two, 1n − replicas of this small cluster are generated, resulting in an

2
n -node cluster. The nodes that originate from the hub become the new hubs. The

copies of peripherals become the new peripherals. To connect the original cluster and

its replicas, the new peripherals are connected to the center.

Subsequently, the 2
n -node cluster is again replicated 1n − times, generating an

3
n -node cluster. The copies of the hubs and peripherals in the previous step become the

new hubs and peripherals, respectively. The new peripherals are then connected to the

center.

www.manaraa.com

104

Following the same procedure, the network generation will be repeated for T

steps. The cluster obtained at step T is referred to as a “module”.

Phase two

Starting from step 1T + , the network generation migrates to phase two. The

module generated at the end of phase one is replicated. We refer to the original module

as module 1 and the replica as module 2. All nodes that originate from hubs and

peripherals are again called hubs and peripherals, respectively. In addition, the copy of

the center of module 1 is called the center of module 2. Unlike in phase one, the

number of centers increases by one at each step in phase two. Two least-connected

hubs—one from each module—are connected through an edge. Specifically, the last

hub in module 1 is connected to the second last hub in module 2. This newly added

edge is referred to as an “inter-module edge”. The hubs connecting the modules

resemble interfacing “studs” in software modules designed for the purpose of

inter-module communications. It is usually desired to keep the linkage between the

studs and other parts of a module to a minimum. Such studs are usually developed after

the functionalities of the module have been developed. The combination of the two

modules and the inter-module edge forms the network of step 1T + .

At the next step, another replica of the original module, referred to as module 3, is

added to the network. Two least-connected hubs—one from module 3 and the other

from module 2—are connected through an inter-module edge. Specifically, the last hub

www.manaraa.com

105

in module 2 is connected to the second last hub in module 3. This procedure can be

repeated indefinitely.

S tep 1

S tep 2

S tep 4

S tep 5

S tep 3

Peripheral

Hub

Center

Phase One

Phase Two

Inter-Modular Edge

Module

Hub

Fig. 5.3 Two-phase network growth model. Note that the initial network is fully

connected, although the edges connecting diagonal nodes are not evident.

www.manaraa.com

106

Fig. 5.3 illustrates the complete procedure using an example where 5n = and

3T = . The first three steps follow the first-phase generation rules. Steps 4 and 5

represent the second-phase network generation.

5.4.3 Formal model description

We reuse the symbols listed in Table 2.2, and add a subscript representing the step

of network growth. For example,
t

N denotes the number of nodes at step t . Table

5.2 lists some additional necessary symbols.

Table 5.2 Additional symbols used in the proposed model

Symbol Measure

t Current step of network growth

t
V Set of nodes at step t

t
VH Set of hubs at step t

t
VP Set of peripherals at step t

t
VC Set of centers at step t

),(ji Edge connecting nodes i and j

t
E Set of edges at step t

t
EI Set of inter-module edges at step t

www.manaraa.com

107

Table 5.3 Various aspects of the proposed two-phase network growth model

 1=t Tt ≤≤2

t
V {1,2,..., }n 1

1 1{ | ; 1,2,..., 1}t

t t
V i c n i V c n

−

− −
+ ⋅ ∈ = −U = {1,2,..., }tn

t
VH {1} 1

1{ | ; 1,2,..., 1}t

t
i c n i VH c n

−

−
+ ⋅ ∈ = −

t
VP {2,3,..., }n 1

1{ | ; 1,2,..., 1}t

t
i c n i VP c n

−

−
+ ⋅ ∈ = −

t
VC {1} {1}

t
E {(,) |i j , 1,2,..., ;i j n= }i j≠

1

1 1

1{(,) | (,) ; 1,2,..., 1}t

t t

tE i c n j c n i j E c n−

− −

−
+ ⋅ + ⋅ ∈ = −U

{(1,) | }
t

i i VP∈U

t
EI ∅ ∅

 Tt >

t
V

1 {() | }T

t T
V t T n i i V

−
− + ∈U = {1,2,..., (1) }Tt T n− +

t
VH

1 {() | }T

t T
VH t T n i i VH

−
− + ∈U

t
VP

1 {() | }T

t T
VP t T n i i VP

−
− + ∈U

t
VC

1 {() 1}T

t
VC t T n

−
− +U = {1 | 0,1,..., }Tc n c t T+ ⋅ = −

t
E

1 1{(() , ()) | (,) } (\)T T

t T t t
E t T n i t T n j i j E EI EI

− −
− + − + ∈U U

t
EI

1 {(() 1, (1) 2 1)}T T

t
EI t T n n t T n n

−
− − + − + − +U =

{(1, (1) 2 1) | 1,2,... }T Tc n n c n n c t T⋅ − + + − + = −

www.manaraa.com

108

Various aspects of our two-phase network growth model are formally defined in

Table 5.3. When 1 t T≤ ≤ , the network growth is in phase one. When t T> , the

network growth is in phase two.

Table 5.4 lists some basic measures. Most measures can be straightforwardly

derived, except | |
t t

M E= , as
t

E is only recursively specified.
t

M can be derived

from the following recursively defined sequence.

2

1

(1)

2
n

n n
M C

−
= = (5.1)

1 1| | (1)t

t t t t
M n M VP n M n

− −
= ⋅ + = ⋅ + − , when Tt ≤≤2 . (5.2)

1 1
t t T

M M M
−

= + + = (1)
T

t T M t T− + + − , when Tt > . (5.3)

Table 5.4 Basic measures of the proposed two-phase network growth model

 1 t T≤ ≤ Tt >

t
N =| |

t
V t

n (1) Tt T n− +

| |
t

VH 1(1)tn −
− 1(1)(1)Tt T n −

− + −

| |
t

VP (1)tn − (1)(1)Tt T n− + −

| |
t

VC 1 1t T− +

t
M =| |

t
E 1 11

(3 2)(1) (1)
2

t t
n n n n

− +
− − − − 1 11

(1)((3 2)(1) (1))
2

T T
t T n n n n t T

− +
− + − − − − + −

| |
t

EI 0 t T−

www.manaraa.com

109

5.5 Properties of the proposed model

In this section, we derive and discuss some properties of networks generated

following the proposed two-phase growth model. The analysis will show that the

proposed model reproduces the features observed in the empirical analysis of real-world

software packages.

5.5.1 Average degree

Property 1: In the limit of large network size (as t T> → ∞), average degree tk

tends to a constant, which is independent of the network size.

Proof:

When t T> ,
t

M = 1 11
(1)((3 2)(1) (1))

2

T T
t T n n n n t T

− +
− + − − − − + − ,

t
N = (1) Tt T n− + .

tk =
2

t

t

M

N
=

1(3 2)(1) 2 2(1) 2

(1)

T

T T

n n n

n n t T n

+
− − − −

+ −
− +

. (5.4)

The time-dependent term
2

(1) T
t T n− +

 is negligible in a reasonably-sized

software package. For example, when n =5, T =5, and t =10,
2

(1) T
t T n− +

 is about

0.0001 and has little effect on tk . As t → ∞ , tk →

1(3 2)(1) 2 2(1)T

T

n n n

n n

+
− − − −

+ ,

www.manaraa.com

110

which is constant and is only dependent on the initial cluster size n and the phase

migration threshold T . ■

5.5.2 Clustering coefficient

First, we show that in the RB hierarchical network model (corresponding to the

situation where T = ∞ , such that the network growth remains in the first phase, in the

proposed model), the clustering coefficient in the Newman definition tends to zero in the

limit of large network size. This has also been demonstrated in Fig. 4 and is

inconsistent with what we observe in the function dependency networks of real-world

software packages.

Property 2: If T = ∞ and t T≤ always holds, as t → ∞ , the clustering

coefficient in the Newman definition (2) 0
t

C → .

Proof:

If T = ∞ and t T≤ always holds, the network growth remains in the first phase.

Recall that (2) 3
t

t

t

p
C

q

×
= , where

t
p is the number of triangles and

t
q is the

number of connected triples. At t =1, as the initial network is fully connected, every

triple is also a triangle, each triangle contributes three connected triples centered on

different nodes, 1q =3× 1p , and thus
(2)

1C =1.

When 2 t T≤ ≤ , the triangles in the network
t

G come from two sources: the

replicas of 1t
G

−
, and the new triangles formed by the inter-cluster edges connecting the

www.manaraa.com

111

center and the peripherals. Note that a new triangle can only be formed when two

inter-cluster edges are connecting the center and two peripherals from the same replica of

the original cluster 1G . Therefore,

1 2 1

1 1 1

(1)(2)
(1) (1)

2

t t

t t n t

n n
p np n C np n

− −

− − −

− −
= + − = + − (5.5)

The connected triples in
t

G come from four sources: the replicas of 1t
G

−
, the new

triples formed by two inter-cluster edges; the new triples formed by one inter-cluster edge

and one intra-cluster edge that belongs to a replica of 1t
G

−
; the new triples formed by one

inter-cluster edge and one intra-cluster edge that belongs to 1t
G

−
. Therefore,

t
q = 1

(1) 1 (1) (1)
(1) (1) (3) (1)

2 2

t t
t t t

t

n n n
nq n n n t n

n
−

− − − − −
+ − + − + − + −

−
 (5.6)

Apparently,
t

q (on the order of
2t

n) increases much faster than
t

p (on the order of

1t
n

+
). (2)

t
C monotonically decreases as t increases. (2) 0

t
C → , as t → ∞ . ■

We now show that when the proposed two-phase network growth model is indeed

in effect (i.e., T is finite), the clustering coefficient in the Newman definition tends to a

non-zero constant in the limit of large network size.

Property 3: If T is finite, as t T> → ∞ , (2)

t
C tends to a non-zero constant.

Proof:

When Tt > , the new triangles of
t

G come only from the addition of a new

replica of
T

G to 1t
G

−
. The single inter-module edge that links the new replica of

T
G

and 1t
G

−
 does not introduce any new triangle. Therefore,

1 (1)
t t T T

p p p t T p
−

= + = − + (5.7)

www.manaraa.com

112

The inter-module edge does introduce new connected triples. The number of such

connected triples is twice the degree of the hubs connected by the inter-module edge.

t
q = 1 2(1) (1) 2()(1)

t T T
q q n t T q t T n

−
+ + − = − + + − − (5.8)

In phase two, we choose to connect hubs instead of peripherals when a new module

is added to the network. The reason is that the degree of hubs does not change in phase

one. In fact, it remains 1n − throughout the first phase. On the other hand, the degrees

of peripherals change as the network grows in phase one, as they are used to connect new

replicas with the center.

(2) 3
t

t

t

p
C

q

×
= =

3(1)

(1) 2()(1)

T

T

t T p

t T q t T n

− +

− + + − −
=

3

2(1)
2(1)

1

T

T

p

n
q n

t T

−
+ − −

− +

 (5.9)

(2)

t
C monotonically decreases as t increases. However, the time-dependent term

2(1)

1

n

t T

−

− +
 becomes negligible as t is sufficiently large. (2)

t
C →

3

2(1)

T

T

p

q n+ −
, as

t T> → ∞ . ■

Finally, while it has been shown that the RB hierarchical network model leads to

invariant clustering coefficient in the Watts-Strogatz definition, (1)

t
C (Watts and Strogatz

1998), we now show that in the proposed two-phase model, (1)

t
C tends to a non-zero

constant in the limit of large network size.

Property 4: As t T> → ∞ , (1)

t
C tends to a non-zero constant.

Proof:

www.manaraa.com

113

Recall that (1)

t
C is defined as the mean of the clustering coefficients of all nodes

and (1)

,i tC = ,

, ,(1) / 2

i t

i t i t

a

k k −
, where ,i ta is the number of edges among the neighbors of

node i . When t T> , at each step, only the two hubs (denoted j and l) connected

by the new inter-module edge experience any degree or edge connection change.

Previously (at step 1t −), all the neighbors of these hubs are connected to each other and

(1)

, 1j tC
−

= (1)

, 1l tC
−

=1. Now (at step t), the degree of these hubs increases by 1 due to the added

inter-module edge.

(1)

,j tC = (1)

,l tC =
(1)(2) / 2

(1) / 2

n n

n n

− −

−
=

2n

n

−
 (5.10)

(1)

t
C = (1) (1) (1) (1) (1) (1)

1 1 , , 1 , , 1

1
(() ())

t t T T j t j t l t l t

t

N C N C C C C C
N

− − − −
+ + − + −

=
(1) (1)

1

1

() 4

(1) (1)

t T

T

t T C C

t T t T n

−

+

− +
−

− + − +

= (1)

1

4()

(1)
T T

t T
C

t T n
+

−
−

− +
= (1)

1

4

(1)
T

T

C
T

n
t T

+

−

+
−

 (5.11)

As t → ∞ , (1)

t
C →

(1)

1

4
T T

C
n

+
− . ■

5.5.3 Degree distribution

Property 5: A network generated by the two-phase model is approximately

scale-free. Its degree distribution approximately follows the power law.

We discuss this property informally here and will demonstrate it through a numeric

study in the next section. Ravasz and Barabási have demonstrated that the RB

www.manaraa.com

114

hierarchical network model approximately retains the scale-free property (Ravasz and

Barabasi 2003). The degree distribution of a RB hierarchical network approximately

follows the power law. In the second phase of the proposed two-phase model, the

network generated using the RB model for T steps are replicated. Such replication

does not change the degree distribution. The only change is caused by the inter-module

edges. At step Tt > , the proportion of n -degree nodes ()
t

p n increases by

2 | |
t

t

EI

M
=

1 1

1

1 1
(1)((3 2)(1) (1)) 1

2

T T
n n n n

t T

− +
+ − − − − +

−

 and the proportion of

(1n −)-degree nodes (1)
t

p n − decreases by the same amount. This amount of change

is negligible in a reasonably-sized network. The degree distribution at any other degree

is identical to that of the RB hierarchical network at step T . The network is still

approximately scale-free.

5.6 Numeric study

In this section, we numerically illustrate some properties of the proposed model.

We also study some possible variations of the model. In the original model, one

inter-module edge connects the hubs of two modules. We now investigate the impacts

of the number and location of the inter-module edges between two modules. As the

uniqueness of the model is in the second phase, we focus the study on the second phase

only.

www.manaraa.com

115

5.6.1 Clustering coefficient

0.76

0.80

0.84

0.88

0 5000 10000 15000 20000

N

C
(1

)
 T = 3

T = 4

T = 5

(a)

0

0.1

0.2

0.3

0 5000 10000 15000 20000

N

C
(2

)

T = 3

T = 4

T = 5

(b)

0.74

0.76

0.78

0.80

0.82

0 5000 10000 15000 20000

N

C
(1

)

1 Edge

3 Edges

16 Edges

32 Edges

48 Edges

64 Edges

(c)

0.0964

0.0966

0.0968

0.0970

0.0972

0.0974

0 5000 10000 15000 20000

N

C
(2

)

1 Edge

3 Edges

16 Edges

32 Edges

48 Edges

64 Edges

(d)

0.8136

0.8140

0.8144

0.8148

0.8152

0 5000 10000 15000 20000

N

C
(1

)

Hub

Center

Random

(e)

0.0964

0.0966

0.0968

0.0970

0.0972

0.0974

0 5000 10000 15000 20000

N

C
(2

)
 Hub

Center

Random

(f)

Fig. 5.4 Clustering coefficients of two-phase network growth model

www.manaraa.com

116

(a), (b): Original model; (c),(d): Varying the number of inter-module edges (T =4);

(e),(f): Varying the locations of inter-module edges (T =4).

Fig. 5.4 shows the clustering coefficients in the Newman and Watts-Strogatz

definitions under various settings. We set the size of the initial cluster to n =5

throughout this section. The value of n affects the absolute values, but not the trends,

of clustering coefficient and other topological properties examined later.

Figures (a) and (b) show the clustering coefficients of the original model under

different values of T , which determines the size of a module generated in phase one.

The clustering coefficients by both definitions quickly approach certain lower bounds as

the network grows. The larger the modules are, the lower the overall clustering is.

Figures (c) and (d) show the effects of the number of inter-module edges between

two modules on clustering. The inter-module edges connect hubs of the modules. For

n =5, T =4, each module has 64 hubs. As the number of inter-module edges increases,

the lower bounds of the clustering coefficients decrease and it takes longer to approach

the lower bounds. This corresponds to the intuition that lowering inter-module coupling

helps to improve the overall clustering.

Figures (e) and (f) show the effects of the locations of inter-module edges on

clustering. Three conditions are investigated: the inter-module edge between two

modules connects (1) hubs, (2) centers, and (3) randomly selected nodes. The first two

conditions set the upper and lower bounds of clustering, as the center of a module has the

www.manaraa.com

117

highest degree and the hubs have the lowest degree. Placing the inter-module edge

randomly leads to clustering lying between the bounds. The locations of inter-module

edges have different effects on the clustering coefficients in different definitions.

Connecting hubs gives the upper bound of (1)
C and the lower bound of (2)

C .

5.6.2 Average degree

7.10

7.15

7.20

7.25

7.30

7.35

0 5000 10000 15000 20000

N

A
v

er
a

g
e

D
eg

re
e

1 Edge

3 Edges

16 Edges

32 Edges

48 Edges

64 Edges

Fig. 5.5 Average degree (T=4) of two-phase network growth model.

Fig. 5.5 shows the average degrees of the original model and its variants with

different numbers of inter-module edges. In the original model, average degree quickly

approaches an upper bound. As the number of inter-module edges increases, the upper

www.manaraa.com

118

bound also increases and it takes longer to approach the upper bound. The locations of

inter-module edges have no effect on average degree.

5.6.3 Degree distribution

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

Log k

L
o
g
 p

(k
)

 .

t = T

t = T + 4

t = T + 9

t = T + 14

t = T + 19

t = T + 24

(a)

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

Log k

L
o
g
 p

(k
)

 .

t = T

t = T + 4

t = T + 9

t = T + 14

t = T + 19

t = T + 24

(b)

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

Log k

L
o
g
 p

(k
)

 .

t = T

t = T + 4

t = T + 9

t = T + 14

t = T + 19

t = T + 24

(c)

-8

-6

-4

-2

0

0 2 4 6 8 10

Log k

L
o
g
 p

(k
)

.

(d)

Fig. 5.6 Degree distribution (T=4) of two-phase network growth model.

www.manaraa.com

119

(a): Original model; (b): 64 inter-module edges connecting hubs; (c): one inter-module

edge connecting centers; (d): 64 inter-module edges connecting randomly-selected nodes

(t =T +24)

Fig. 5.6 shows the degree distributions of the original model and some variants.

In the original model (see Fig. 5.6(a)), the degree distribution remains almost the same as

the network grows. The only changes at degrees n and 1n − are negligible. The

model basically retains the degree distribution of the RB hierarchical network model

(Note that when t T≤ , the model is identical to the RB hierarchical network model

(Ravasz and Barabasi 2003)). The degree distribution approximately follows the power

law (Ravasz and Barabasi 2003).

As the number of inter-module edges increases (see Fig. 5.6(b)), the deviation from

the RB hierarchical network model increases. The changes occur mainly at low degrees.

The degree distribution still appears to approximately follow the power law.

If the inter-module edge between two modules connects the centers, rather than

hubs, of the modules (see Fig. 5.6(c)), the degree distribution deviates from that of the

RB model at high degrees. The deviation increases as the network grows. The degree

distribution gradually departs from the power law.

If there are many inter-module edges connecting randomly selected nodes (see Fig.

5.6(d)), the degree distribution may severely deviate from the power law over time, thus

destroying the scale-free property. Deviation may occur at any degree.

From Fig. 5.6(c) and (d), we observe that the connecting vertices of the

inter-module edges play an important role in maintaining the power law property. On

www.manaraa.com

120

the other hand, Fig. 5.6(b) shows that the number of inter-module edges connecting two

modules is a less significant factor. The connecting vertices of inter-module edges

correspond to the interface functions of the modules in software packages. Our finding

is consistent with the common knowledge established in the software engineering field

that interface functions are very important in maintaining the software structure as the

software size expands. If the interface functions are chosen wisely, a software package

can maintain a steady structure even though interface functions are heavily called across

modules.

The effects of the number and location of inter-module edges can be summarized as

follows. The number of inter-module edges has little effect on degree distribution.

However, as this number increases, clustering decreases while average degree increases.

The location of inter-module edges has no effect on average degree but affects clustering

and degree distribution. Its effect on clustering is different depending on the definition of

clustering coefficient. Connecting hubs (centers) of modules provides the upper (lower)

bound of (1)
C and the lower (upper) bound of (2)

C . If the inter-module edges connect

centers, degree distribution gradually departs from the power law as the network grows.

Connecting randomly-selected nodes across modules may destroy the scale-free property.

5.7 Concluding remarks

In this chapter, we propose a new network growth model. Our development of the

model is inspired by generally-advocated software engineering principals, such as

www.manaraa.com

121

divide-and-conquer, modularization, high intra-module cohesion, and low inter-module

coupling. The model has two phases. The first phase follows the hierarchical network

model of Ravasz and Barabási (Ravasz and Barabasi 2003). The second phase strives to

minimize the coupling across modules generated following the hierarchical network

model. Both analytical and numerical studies show that the proposed model adequately

reproduces the topological features observed in real-world software packages.

The results of this work can be used in developing metrics and associated

guidelines—complementing existing ones—in CASE tools. Such metrics provide

further insights into the overall structure of a software package and the process governing

its development. They can be used by software developers and managers to adjust

processes and strategies during software development. They can also be used to

evaluate and compare developed packages, especially open-source products, in terms of

such properties as modularity, intra-module cohesion, and inter-module coupling.

Similar to some related studies (e.g., (Zheng, Zeng et al. 2008)), we focus on the

physical topological properties of a particular type of networks (i.e., software function

dependency networks). However, while our model has been developed explicitly to

characterize and explain software function dependency networks, it may be applied to

study pervasive physical topological properties possessed by other networks that exhibit

similar features. It may be especially useful for studying networks that exhibit such

features as modularization, high cohesion, and low coupling. For example, a movie

actor is usually associated with a certain company or agent. Naturally, actor

www.manaraa.com

122

collaboration networks should exhibit heavy intra-company collaborations and relatively

sparse inter-company collaborations. Our two-phase network growth model can

potentially be used to analyze such actor collaboration networks.

Our study opens up several avenues for further research. First, investigating

networks built from historical versions of the same software package may generate useful

insights. Analyze the evolvement of the software unit dependency networks and how

software grows and changes over time is likely to provide direct evidence to support our

network growth model.

Second, while we have modeled software packages as un-directed, un-weighted

networks of functions, considering the direction and weight of function calls may reveal

additional useful information about software packages.

Third, while we have focused on seeking a general understanding of software

development in this chapter, our model can be extended in the future to accommodate

more specifics (e.g., complexity differences across functions and size differences across

modules) with parameters (e.g., T) tuned to fit a particular software package of interest.

Further research and improved understanding of random networks may lead to the

development of useful metrics that provide guidance to software developers and

architects in the development of complex software systems.

www.manaraa.com

123

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS

Open source software has gained increasing popularity for the past few years.

Lots of businesses choose to adopt open source software due to its cost efficiency and

customizable functionalities. However, as open source software packages become

increasingly complicated, it is very difficult to analyze the structures of the software

products, and predict the quality of the software at the early stage of the development

process. In this dissertation, we confront the challenges that exist in open source

software engineering. Specifically we examine the collaborative relations among open

source software developers, study software development processes, and analyze the

structures of open source software packages’ source code. Our intentions are to

discover some common properties that are shared by different open source software

applications, and hopefully to reveal the underlying characteristics that guide the open

source software development. Our research follows the 4-P framework which defines

the four key elements in software engineering: Project, People, Process, and Product.

In terms of research methodology, we leverage the topological metrics that have been

established in complex network theory, and propose a random network growth model to

illustrate open source software development processes.

In Chapter 2, we analyze real world software packages with function dependency

networks. Our study subject is the source code of open source software packages, the

product of software engineering. We obtain the source code of five C language based

www.manaraa.com

124

open source software packages that have different package sizes, and are from different

application domains. All those packages are considered successful in their own

application domain. We then construct an undirected and un-weighted network for each

one of the software packages with the vertex representing a function and the edge as a

function call. Once the function dependency networks are constructed, we leverage

several widely adopted topological measures to analyze those networks. Our empirical

study indicates three common features that those five function dependency networks

possess: (1) average degree is independent of network size, (2) clustering coefficient, in

either of two definitions proposed by Watts and Strogatz, and by Newman, is independent

of network size, and (3) the networks are scale-free. These findings support our

hypothesis that there exist some common topological properties shared by different open

source software packages over a wide range of purpose, domain, size, and complexity.

The results of Chapter 2 can be used as a starting point to quantitatively analyze

software architectural structures. Although we used open source software packages to

perform the case study, the usage of our research is not confined to the scope of open

source software applications. Software companies can easily adopt our method to

examine the architectural structure of their proprietary software products since they have

the full control of their own software source code. Moreover a similar framework can

be easily created to analyze software systems that are developed in programming

languages other than C language. For example, we can construct a software unit

dependency network for a Java-based system by defining vertex as a Java object and edge

www.manaraa.com

125

as a Java object reference. Once the dependency network has been constructed, the

similar set of topological measures can be calculated to examine that software package.

Chapter 3 focuses on another important factor in software engineering field, People,

more specifically software developers. The collaboration among software developers is

an important factor in open source software development as the efficiency of the

developer collaboration has a direct impact on the quality of the final software product.

In this chapter, we intend to discover some common patterns from different real world

software developers’ collaborations. Specifically we choose the bug fixing data sets of

two real world software applications, MediaWiki and Gentoo, to perform the empirical

analysis. We define the fact that two developers have worked to solve at least one bug

together as the collaboration between those two developers. Based on that definition,

we extract bug-developer bipartite networks from those two bug fixing data sets, and

derive developer-developer collaboration networks from the bipartite networks.

Following the similar procedure described in Chapter 2, we calculate several topological

measures for those constructed bug-developer bipartite networks and

developer-developer collaboration networks. The empirical findings show that all

networks including the bipartite networks possess the scale-free property. Our empirical

findings and research framework can be extended to further examine open source

software developer collaborations such as development leadership, task assignments and

scheduling, the impact of key developer’s sudden departure, etc.

www.manaraa.com

126

In both Chapter 2 and Chapter 3, the networks that we extract out of real world

entities are undirected and un-weighted. In the future research, we may extend our

empirical study by considering meaningful directions and weights on the constructed

networks. By considering the direction and weight of edges, we will incorporate more

usable information of the real world entities, and thus may reveal additional useful

findings about software products and developer collaborations.

In complex network theory, clustering coefficient is one of the most informative

topological measures. Chapter 4 aims to provide an analytical comparison between two

widely adopted clustering coefficient definitions,
WS

C and
NW

C , proposed by

Watts-Strogatz and Newman, respectively. Mathematical derivations are presented to

compare the similarities and differences between those two definitions. Our findings

show the two definitions both depend on ()i

a
T and ()i

pT , the number of triangles and

triples, respectively, around vertex i . The difference between the two definitions lies

in that
WS

C is the mean of the ratio ()i

a
T and ()i

pT , and
NW

C is the ratio of the two

means of ()i

a
T and ()i

pT . We also examine the lower bounds and upper bounds of those

two definitions, and the conditions to meet those extreme bounds. Our further analysis

shows the impact factors of
WS

C and
NW

C values. Using simulated scale-free

networks, we demonstrate that the extremely popular vertices have little impact on
WS

C

due to the limited number of those popular vertices. Whereas those popular vertices are

the dominating factors in determining the value of
NW

C .

www.manaraa.com

127

Our research results show some useful analytical properties of the two clustering

coefficient definitions,
WS

C and
NW

C . The results provide complex network

researchers more insights when they conduct network analysis research. For example,

our findings provide the guidelines on which clustering coefficient definition should be

adopted when a complex network needs to be analyzed. Moreover the analytical

properties of the two clustering coefficient definitions can be useful when a random

network growth model is proposed to explain the formation of a complex network.

Chapter 5 incorporates all the empirical and analytical findings that have been

presented in the previous chapters. In this chapter, we intend to discover the underlying

characteristics of open source software development processes, and provide a reasonable

explanation of the formation of open source software packages. Together with Chapter

2 and Chapter 3, we have studied three of the four P’s, Product, People, and Process, in

the Four P Software Engineering Framework.

Chapter 5 reuses the empirical findings from Chapter 2, the topological features of

the function dependency networks that have been extracted from five real world C-based

open source software packages. In addition to the descriptive findings, in Chapter 5 we

propose a two-phase network growth model that simulates the development process of

open source software products. Our network growth model is inspired by some widely

adopted principles in software engineering, e.g. modularization, high intra-module

cohesion, low inter-module coupling, etc. The model also leverages the analytical

www.manaraa.com

128

results in Chapter 4 by considering the similarities and differences between
WS

C and

NW
C . Our network growth model describes two different growth phases as the size of

the software grows. The first phase follows the hierarchical network model proposed by

Ravasz and Barabási (Ravasz and Barabasi 2003). In the second phase software

modules are connected with sparse inter-module connections. The second phase

observes the low inter-module coupling principle. Both analytical and numerical results

demonstrate that the proposed two-phase network growth model adequately reproduces

the topological properties that have been found in Chapter 2.

The results of Chapter 5 can be leveraged by software developers and managers to

adjust processes and strategies during software development in order to reduce the

software development costs and risks.

This dissertation opens up several avenues for further research.

First, while we have studied several distinct open source software packages,

investigating networks built from historical versions of the same software package is

likely to provide direct evidence to support our network growth model. By comparing

the networks extracted from different versions of the same software, we will be able to

realize how software structures evolve over time. Moreover, if we consider the

popularity, such as the download rate and user rating, of each software version, we are

likely to discover more insights on how network structure and popularity correlate.

Second, most networks that we have extracted from the real world entities are

un-directed and un-weighted. Considering the direction and weight of those networks

www.manaraa.com

129

may reveal additional useful information about open source software. For the C-based

software packages, the edge direction can indicate the direction of the function call

between the two connected C functions. Similarly, the weight on an edge may represent

the number of function calls between those two functions. Note that by considering the

direction of the network edge, we have to take into consideration of possible network

loops and self loops. Thus the constructed networks will likely have more complicated

topological structures.

Third, all of the five real world software packages that we chose for the case studies

are considered “popular” or “good quality” software systems. On the other hand,

comparing software packages with different popularities, e.g. download rates, and

qualities, e.g. user ratings, in the same application domain would be worthwhile. The

comparison is likely to reveal the correlation between software structure and software

quality. The challenge in this line of research extension lies in two folds. Firstly, the

quantitative definition of the so-called software quality is still under intense debate in

software engineering field. Secondly, the popularity depends on a much broader range

of factors than the structure of the software package. Other related impact factors

include the timing of the software release, user accessibility, key developers’ name

recognition, etc.

Fourth, while all five software packages in this dissertation are written in C which

is a procedural language, it would be interesting to examine software packages written in

Object-Oriented languages, such as C++, C#, and Java. Lots of modern open source

www.manaraa.com

130

software projects are developed in Java, e.g. Hadoop, Solr, Lucene, etc. The high

popularity of Java based open source software projects provides more open source

subjects to analyze. Unlike C, Java based software packages have more hierarchical

structures. For example, a network vertex can represent a package, a Java file, a class,

or a method. How to choose the appropriate level of abstraction is the key challenge

when a network is to be constructed out of the software source code.

The results of this dissertation can be used as a starting point to quantitatively

analyze open source software architectural structures, and the development process of the

software packages. More metrics and associated guidelines can be developed to help

software developers adjust software development strategies in order to minimize the risks

and costs of software development.

While our research focuses on a particular type of networks, i.e., open source

software networks, our research methods, measures and the proposed network growth

model may be applied to study other networks that exhibit similar features. For

example, movie actor collaboration networks also possess such features as

modularization, high cohesion, and low coupling, our research methods and the

two-phase network growth model can potentially be used to analyze the actor

collaboration networks.

www.manaraa.com

131

REFERENCES

Adamic, L. A. "Zipf, Power-laws, and Pareto - a ranking tutorial." from

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html.

Albert, R. and A. L. Barabasi (2000). "Dynamics of complex systems: scaling laws for

the period of boolean networks." Phys Rev Lett 84(24): 5660-3.

Albert, R. and A. L. Barabasi (2000). "Topology of evolving networks: local events and

universality." Phys Rev Lett 85(24): 5234-7.

Albert, R. and A. L. Barabasi (2002). "Statistical mechanics of complex networks."

Reviews of Modern Physics 74(1): 47-97.

Albert, R., H. Jeong, et al. (2000). "Error and attack tolerance of complex networks."

Nature 406(6794): 378-82.

Amaral, L. A. N., A. Scala, et al. (2000). "Classes of small-world networks." Proceedings

of the National Academy of Sciences of the United States of America 97(21):

11149-11152.

Ancel Meyers, L., M. E. Newman, et al. (2003). "Applying network theory to epidemics:

control measures for Mycoplasma pneumoniae outbreaks." Emerg Infect Dis 9(2):

204-10.

Bagheri, E. and D. Gasevic (2011). "Assessing the maintainability of software product

line feature models using structural metrics." Software Quality Journal 19(3):

579-612.

Barabasi, A. L. and R. Albert (1999). "Emergence of scaling in random networks."

Science 286(5439): 509-512.

Barabasi, A. L., R. Albert, et al. (1999). "Mean-field theory for scale-free random

networks." Physica A 272(1-2): 173-187.

Barabasi, A. L. and E. Bonabeau (2003). "Scale-free networks." Sci Am 288(5): 60-9.

Barabasi, A. L., H. Jeong, et al. (2002). "Evolution of the social network of scientific

collaborations." Physica A 311(3-4): 590-614.

Bilke, S. and C. Peterson (2001). "Topological properties of citation and metabolic

networks." Phys Rev E Stat Nonlin Soft Matter Phys 64(3 Pt 2): 036106.

Callaway, D. S., M. E. Newman, et al. (2000). "Network robustness and fragility:

percolation on random graphs." Phys Rev Lett 85(25): 5468-71.

Chhabra, J. K. and V. Gupta (2010). "A Survey of Dynamic Software Metrics." Journal of

Computer Science and Technology 25(5): 1016-1029.

Cimitile, A. and U. Decarlini (1991). "Reverse Engineering - Algorithms for Program

Graph Production." Software-Practice & Experience 21(5): 519-537.

Cohen, R., D. Ben-Avraham, et al. (2002). "Percolation critical exponents in scale-free

networks." Phys Rev E Stat Nonlin Soft Matter Phys 66(3 Pt 2A): 036113.

Cohen, R. and S. Havlin (2003). "Scale-free networks are ultrasmall." Phys Rev Lett

www.manaraa.com

132

90(5): 058701.

Colazo, J. A. (2010). "Collaboration structure and performance in new software

development: Findings from the study of open source projects." Int. J. Innov.

Manage. International Journal of Innovation Management 14(5): 735-758.

Darcy, D. P., C. F. Kemerer, et al. (2005). "The structural complexity of software: An

experimental test." IEEE Transactions on Software Engineering 31(11): 982-995.

Dhama, H. (1995). "Quantitative Models of Cohesion and Coupling in Software." Journal

of Systems and Software 29(1): 65-74.

Dorogovtsev, S. N. and J. F. F. Mendes (2001). "Scaling properties of scale-free evolving

networks: Continuous approach." Physical Review E 6305(5): -.

Durrett, R. (2010). "Some features of the spread of epidemics and information on a

random graph." Proceedings of the National Academy of Sciences of the United

States of America 107(10): 4491-4498.

Eggemann, N. and S. D. Noble (2011). "The clustering coefficient of a scale-free random

graph." Discrete Applied Mathematics 159(10): 953-965.

Eichinger, F., D. Kramer, et al. (2010). "From source code to runtime behaviour: Software

metrics help to select the computer architecture." Knowledge-Based Systems

23(4): 343-349.

Erdos, P. and A. Renyi (1959). "On Random Graphs." Publicationes Mathematicae 6:

290-297.

Erdos, P. and A. Renyi (1960). "On the Evolution of Random Graphs." Bulletin of the

International Statistical Institute 38(4): 343-347.

Erdos, P. and A. Renyi (1961). "On the strength of connectedness of a random graph."

Acta Mathematica Scientia Hungary 12: 261-267.

Etzkorn, L., C. Davis, et al. (1998). "A practical look at the lack of cohesion in methods

metric." Journal of Object-Oriented Programming 11(5): 27-34.

Faloutsos, C., P. Faloutsos, et al. (1999). On power law relationships of the Internet

topology. Proceedings of ACM SIGCOMM. Cambridge, MA. 12: 251-262.

Fothi, A., J. Nyeky-Gaizler, et al. (2003). "The structured complexity of object-oriented

programs." Mathematical and Computer Modelling 38(7-9): 815-827.

Frakes, W. B. and G. Succi (2001). "An industrial study of reuse, quality, and

productivity." Journal of Systems and Software 57(2): 99-106.

Goh, K. I., B. Kahng, et al. (2001). "Spectra and eigenvectors of scale-free networks."

Phys Rev E Stat Nonlin Soft Matter Phys 64(5 Pt 1): 051903.

Goh, K. I., B. Kahng, et al. (2001). "Universal behavior of load distribution in scale-free

networks." Phys Rev Lett 87(27 Pt 1): 278701.

Goh, K. I., D. S. Lee, et al. (2003). "Sandpile on scale-free networks." Phys Rev Lett

91(14): 148701.

Goh, K. I., E. Oh, et al. (2002). "Classification of scale-free networks." Proc Natl Acad

Sci U S A 99(20): 12583-8.

Goh, K. I., E. Oh, et al. (2003). "Betweenness centrality correlation in social networks."

www.manaraa.com

133

Phys Rev E Stat Nonlin Soft Matter Phys 67(1 Pt 2): 017101.

Gondal, N. (2011). "The local and global structure of knowledge production in an

emergent research field: An exponential random graph analysis." Social Networks

33(1): 20-30.

Goodreau, S. M., J. A. Kitts, et al. (2009). "Birds of a Feather, or Friend of a Friend?

Using Exponential Random Graph Models to Investigate Adolescent Social

Networks." Demography 46(1): 103-125.

Hahn, J., J. Y. Moon, et al. (2008). "Emergence of new project teams from open source

software developer networks: Impact of prior collaboration ties." Inf. Syst. Res.

Information Systems Research 19(3): 369-391.

Harrison, R., L. G. Samaraweera, et al. (1996). "Comparing programming paradigms: An

evaluation of functional and object-oriented programs." Software Engineering

Journal 11(4): 247-254.

Hu, J. Q., C. G. Guo, et al. (2005). "Stratus: A distributed Web Service Discovery

Infrastructure based on double-overlay network." Web Technologies Research and

Development - Apweb 2005 3399: 1027-1032.

Jacobson, I., G. Booch, et al. (1999). The Unified Software Development Process,

Edison-Wesley.

Jin, E. M., M. Girvan, et al. (2001). "Structure of growing social networks." Phys Rev E

Stat Nonlin Soft Matter Phys 64(4 Pt 2): 046132.

Johnson, J. P. (2006). "Collaboration, peer review and open source software." Information

Economics and Policy 18(4): 477-497.

Kang, B. K. and J. M. Bieman (1999). "A quantitative framework for software

restructuring." Journal of Software Maintenance-Research and Practice 11(4):

245-284.

Kanmani, S., V. R. Uthariaraj, et al. (2004). "Measuring the Object-Oriented properties in

small sized C++ programs - An empirical investigation." Product Focused

Software Process Improvement 3009: 185-202.

Kennel, E. B., M. S. Perry, et al. (1989). "Reliability and Single Point Failure Design

Considerations in Thermionic Space Nuclear-Power Systems." Space Power

8(1-2): 219-223.

Kim, J. H., K. I. Goh, et al. (2003). "Probabilistic prediction in scale-free networks:

diameter changes." Phys Rev Lett 91(5): 058701.

Krapivsky, P. L., S. Redner, et al. (2000). "Connectivity of growing random networks."

Physical Review Letters 85(21): 4629-4632.

Leino, K. R. M. and G. Nelson (2002). "Data abstraction and information hiding." ACM

Transactions on Programming Languages and Systems 24(5): 491-553.

Li, B. C. and D. Niu (2011). "Random Network Coding in Peer-to-Peer Networks: From

Theory to Practice." Proceedings of the Ieee 99(3): 513-523.

Li, H. A. and B. Li (2011). "A Pair of Coupling Metrics for Software Networks." Journal

of Systems Science & Complexity 24(1): 51-60.

www.manaraa.com

134

Li, W. and S. Henry (1993). "Object-Oriented Metrics That Predict Maintainability."

Journal of Systems and Software 23(2): 111-122.

Li, Y., F. T. Zou, et al. (2004). "PWSD: A scalable Web service discovery architecture

based on peer-to-peer overlay network." Advanced Web Technologies and

Applications 3007: 291-300.

Ma, Y. T., K. Q. He, et al. (2010). "A Hybrid Set of Complexity Metrics for Large-Scale

Object-Oriented Software Systems." Journal of Computer Science and

Technology 25(6): 1184-1201.

Milgram, S. (1967). "Small-World Problem." Psychology Today 1(1): 61-67.

Milo, R., S. Itzkovitz, et al. (2004). "Superfamilies of evolved and designed networks."

Science 303(5663): 1538-42.

Milo, R., S. Shen-Orr, et al. (2002). "Network motifs: simple building blocks of complex

networks." Science 298(5594): 824-7.

Murphy, G., D. Notkin, et al. (1998). "An Empirical Study of Static Call Graph

Extractors." ACM Transactions on Soft-ware Engineering and Methodology 7:

158-191.

Newman, M. E. (2001). "Clustering and preferential attachment in growing networks."

Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2): 025102.

Newman, M. E. (2001). "Scientific collaboration networks. I. Network construction and

fundamental results." Phys Rev E Stat Nonlin Soft Matter Phys 64(1 Pt 2):

016131.

Newman, M. E. (2001). "Scientific collaboration networks. II. Shortest paths, weighted

networks, and centrality." Phys Rev E Stat Nonlin Soft Matter Phys 64(1 Pt 2):

016132.

Newman, M. E. (2001). "The structure of scientific collaboration networks." Proc Natl

Acad Sci U S A 98(2): 404-9.

Newman, M. E., S. Forrest, et al. (2002). "Email networks and the spread of computer

viruses." Phys Rev E Stat Nonlin Soft Matter Phys 66(3 Pt 2A): 035101.

Newman, M. E. and M. Girvan (2004). "Finding and evaluating community structure in

networks." Phys Rev E Stat Nonlin Soft Matter Phys 69(2 Pt 2): 026113.

Newman, M. E., S. H. Strogatz, et al. (2001). "Random graphs with arbitrary degree

distributions and their applications." Phys Rev E Stat Nonlin Soft Matter Phys

64(2 Pt 2): 026118.

Newman, M. E. and D. J. Watts (1999). "Scaling and percolation in the small-world

network model." Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

60(6 Pt B): 7332-42.

Newman, M. E., D. J. Watts, et al. (2002). "Random graph models of social networks."

Proc Natl Acad Sci U S A 99 Suppl 1: 2566-72.

Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings

of the National Academy of Sciences of the United States of America.

Newman, M. E. J. (2003). "The structure and function of complex networks." SIAM

www.manaraa.com

135

Review 45(2): 167-256.

Newman, M. E. J. (2004). "Analysis of weighted networks." Phys. Rev. E 70: 056131.

Newman, M. E. J., S. H. Strogatz, et al. (2001). "Random graphs with arbitrary degree

distributions and their applications." Physical Review E 6402(2): -.

Newman, M. E. J., D. J. Watts, et al. (2002). "Random graph models of social networks."

Proceedings of the National Academy of Sciences of the United States of America

99: 2566-2572.

Ott, L. M. and J. M. Bieman (1998). "Program slices as an abstraction for cohesion

measurement." Information and Software Technology 40(11-12): 691-699.

Parnas, D. L. (1972). "Criteria to Be Used in Decomposing Systems into Modules."

Communications of the ACM 15(12): 1053-&.

Parnas, D. L. (1972). "Technique for Software Module Specification with Examples."

Communications of the ACM 15(5): 330-&.

Potanin, A., J. Noble, et al. (2005). "Scale-free geometry in OO programs."

Communications of the ACM 48: 99-103.

Ravasz, E. and A. L. Barabasi (2003). "Hierarchical organization in complex networks."

Physical Review E 67(2): -.

Rine, D. C. and R. M. Sonnemann (1998). "Investments in reusable software. A study of

software reuse investment success factors." Journal of Systems and Software

41(1): 17-32.

Sarkar, S., A. C. Kak, et al. (2008). "Metrics for measuring the quality of modularization

of large-scale object-oriented software." Ieee Transactions on Software

Engineering 34(5): 700-720.

Schwartz, N., R. Cohen, et al. (2002). "Percolation in directed scale-free networks." Phys

Rev E Stat Nonlin Soft Matter Phys 66(1 Pt 2): 015104.

Shaw, S. (2003). Evidence of Scale-Free Topology and Dynamics in Gene Regulatory

Networks. ISCA 12th International Conference on Intelligent and Adaptive

Systems and Software Engineering.

Shin, Y., A. Meneely, et al. (2011). "Evaluating Complexity, Code Churn, and Developer

Activity Metrics as Indicators of Software Vulnerabilities." Ieee Transactions on

Software Engineering 37(6): 772-787.

Simpson, S. L., S. Hayasaka, et al. (2011). "Exponential Random Graph Modeling for

Complex Brain Networks." Plos One 6(5).

Singh, P. V. (2011). "The Small-World Effect: The Influence of Macro-Level Properties

of Developer Collaboration Networks on Open-Source Project Success." ACM

TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY

20(2): Article 6.

Taherkhani, A., A. Korhonen, et al. (2011). "Recognizing Algorithms Using Language

Constructs, Software Metrics and Roles of Variables: An Experiment with Sorting

Algorithms." Computer Journal 54(7): 1049-1066.

Tonella, P. (2001). "Concept analysis for module restructuring." IEEE Transactions on

www.manaraa.com

136

Software Engineering 27(4): 351-363.

Tutte, W. T. (1984). Graph theory, Addison-Wesley Publishing Co.

Vazquez, A., M. Boguna, et al. (2003). "Topology and correlations in structured scale-free

networks." Phys Rev E Stat Nonlin Soft Matter Phys 67(4 Pt 2): 046111.

Wang, Y. H., C. M. Chung, et al. (2000). "The complexity measurement of software

through program decomposition." Computer Systems Science and Engineering

15(2): 127-134.

Watts, D. J. (1999). Small Worlds: The Dynamics of Networks between Order and

Randomness. Cambridge, Cambridge Univ. Press.

Watts, D. J., P. S. Dodds, et al. (2002). "Identity and search in social networks." Science

296(5571): 1302-5.

Watts, D. J. and S. H. Strogatz (1998). "Collective dynamics of 'small-world' networks."

Nature 393(6684): 440-442.

Wu, B. and A. D. Kshemkalyani (2008). "Modeling message propagation in random

graph networks." Computer Communications 31(17): 4138-4148.

Yook, S. H., H. Jeong, et al. (2001). "Weighted evolving networks." Phys Rev Lett 86(25):

5835-8.

Zheng, X., D. Zeng, et al. (2008). "Analyzing open-source software systems as complex

networks." Physica A: Statistical Mechanics and its Applications 387(24):

6190-6200.

